A novel, centrifugally tensioned metastable fluid detector (CTMFD) sensor technology has been developed over the last decade to demonstrate high selective sensitivity and detection efficiency to various forms of radiation for wide-ranging conditions (e.g., power, safeguards, security, and health physics) relevant to the nuclear energy industry. The CTMFD operates by tensioning a liquid with centrifugal force to weaken the bonds in the liquid to the point whereby even femtoscale nuclear particle interactions can break the fluid and cause a detectable vaporization cascade. The operating principle has only peripheral similarity to the superheated bubble chamber-based superheated droplet detectors (SDD). Instead, CTMFDs utilize mechanical “tension pressure” instead of thermal superheat, offering a lot of practical advantages. CTMFDs have been used to detect a variety of alpha- and neutron-emitting sources in near real time. The CTMFD is blind to gamma photons and betas allowing for detection of alphas and neutrons in extreme gamma/beta background environments such as spent fuel reprocessing plants. The selective sensitivity allows for differentiation between alpha emitters including the isotopes of plutonium. Mixtures of plutonium isotopes have been measured in ratios of 11, 21, and 31 Pu-238:Pu-239 with successful differentiation. Due to the lack of gamma-beta background interference, the CTMFD is inherently more sensitive than scintillation-based alpha spectrometers or SDDs and has been proved capable to detect below femtogram quantities of plutonium-238. Plutonium is also easily distinguishable from neptunium, making it easy to measure the plutonium concentration in the NPEX stream of a UREX reprocessing facility. The CTMFD has been calibrated for alphas from americium (5.5 MeV) and curium (6MeV) as well. Furthermore, the CTMFD has, recently, also been used to detect spontaneous and induced fission events, which can be differentiated from alpha decay, allowing for detection of fissionable material in a mixture of isotopes. This paper discusses these transformational developments, which are also being considered for real-world commercial use.

References

1.
Sagamore Adams Laboratories
,
2012
, www.salabsllc.com.
2.
Taleyarkhan
,
R.
,
Lapinskas
,
J.
, and
Xu
,
Y.
,
2008
, “
Tensioned Metastable Fluids and Nanoscale Interactions With External Stimuli—Theoretical-Cum-Experimental Assessments and Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
238
(
7
), pp. 
1820
1827
.10.1016/j.nucengdes.2007.10.019
3.
Taleyarkhan
,
R.
,
Lapinskas
,
J.
,
Archambault
,
B.
,
Webster
,
J.
,
Grimes
,
T.
,
Hagen
,
A.
,
Fisher
,
K.
,
McDeavitt
,
S.
, and
Charlton
,
W.
,
2013
, “
Real-Time Monitoring of Actinides in Chemical Nuclear Fuel Reprocessing Plants
,”
Chem.l Eng. Res. Des.
,
91
(
4
), pp. 
688
702
.10.1016/j.cherd.2013.02.010
4.
Scholander
,
P. F.
,
Bradstreet
,
E. D.
,
Hemmingsen
,
E.
, and
Hammel
,
H.
,
1965
, “
Sap Pressure in Vascular Plants Negative Hydrostatic Pressure can be Measured in Plants
,”
Science
,
148
(
3668
), pp. 
339
346
.10.1126/science.148.3668.339
5.
Smagacz
,
P. J.
,
2006
, “
Fast Neutron, Gamma Insensitive, Centrifugally Tensioned Metastable Fluid Detector
,” Master’s of Engineering,
Purdue University
, West Lafayette.
6.
Grimes
,
T.
,
Archambault
,
B.
,
Webster
,
J.
,
Mosier
,
A.
, and
Taleyarkhan
,
R.
,
2012
, “
Transformational Nuclear Particle Sensors-Prediction of Detection Thresholds in Tensioned Metastable Fluids
,”
Trans. Am. Nucl. Soc.
,
106
, pp. 
650
651
.
7.
Lapinskas
,
J. R.
,
Zielinski
,
S. M.
,
Webster
,
J. A.
,
Taleyarkhan
,
R. P.
,
McDeavitt
,
S. M.
, and
Xu
,
Y.
,
2010
, “
Tension Metastable Fluid Detection Systems for Special Nuclear Material Detection and Monitoring
,”
Nuc. Eng. Des.
,
240
(
10
), pp. 
2866
2871
.10.1016/j.nucengdes.2010.05.058
8.
Hume
,
N.
,
Webster
,
J.
,
Grimes
,
T.
,
Hagen
,
A.
,
Taleyarkhan
,
R.
, and
Archambault
,
B.
,
2013
, “
The MAC-TMFD: Novel Multi-Armed Centrifugally Tensioned Metastable Fluid Detector (Gamma-Blind)—Neutron-Alpha Recoil Spectrometer
,”
Proceedingsof 2013 IEEE International Conference on Technologies for Homeland Security (HST)
,
IEEE
,
New York
, pp. 
435
440
.
9.
Sansone
,
A.
,
Zielinski
,
S.
,
Webster
,
J.
,
Lapinskas
,
J.
,
Taleyarkhan
,
R.
, and
Block
,
R.
,
2011
, “
Gamma-Blind Nuclear Particle-Induced Bubble Formation in Tensioned Metastable Fluids
,”
Trans. Am. Nucl. Soc.
,
104
, p. 
1033
.
10.
Knoll
,
G. F.
,
2010
,
Radiation Detection and Measurement
,
John Wiley & Sons
,
Hoboken, NJ
.
11.
Korea Atomic Energy Research Institute
,
2000
, “
Table of Nuclides
,” http://atom.kaeri.re.kr/.
12.
Gauld
,
I. C.
,
Hermann
,
O. W.
, and
Westfall
,
R. M.
,
2009
, “
ORIGEN-S: Scale System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms
,”
Oak Ridge National Laboratory
,
Oak Ridge, Tennessee
, , Version 6.
13.
Hagmann
,
C. A.
,
Dietrich
,
D. D.
,
Hall
,
J. M.
,
Kerr
,
P. L.
,
Nakae
,
L. F.
,
Newby
,
R. J.
,
Rowland
,
M. S.
,
Snyderman
,
N. J.
, and
Stoeffl
,
W.
,
2009
, “
Active Detection of Shielded SNM With 60-keV Neutrons
,”
IEEE Trans. Nucl. Sci.
,
56
(
3
), pp. 
1215
1217
.10.1109/TNS.2009.2012859
14.
IAEA
,
2008
, “
International Atomic Energy Agency Nuclear Technology Review
.”
You do not currently have access to this content.