Abstract

This paper describes the outline and development plan for “Advanced Reactor Knowledge- and Artificial Intelligence (AI)-aided design integration approach through the whole plant lifecycle (ARKADIA),” which the Japan Atomic Energy Agency has begun developing to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source. ARKADIA will realize AI-aided integrated numerical analysis to offer the best possible solutions for any challenge that could arise in the design and operation of a nuclear plant, including optimization of safety equipment as well as structures, systems, and components. State-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&D are integrated with AI. In the first phase of development, ARKADIA-design and ARKADIA-safety will be constructed individually, with the first target of a sodium-cooled reactor. In a subsequent phase, everything will be integrated into a single entity that is technology inclusive and applicable not only to advanced rectors with a variety of concepts, coolants, configurations, and output levels but also to existing light-water reactors.

References

1.
Doda
,
N.
,
Hamase
,
E.
,
Kikuchi
,
N.
, and
Tanaka
,
M.
,
2019
, “
Development of Platform for Design Optimization in Fast Reactor Based on Coupling Analysis Codes
,”
Proceedings of Computational Engineering Conference JSCES (Japanese)
, Vol.
24
, Saitama, Japan, May. 29–31, Paper No. E-10-03.
2.
Doda
,
N.
,
Yokoyama
,
K.
,
Tanaka
,
M.
,
Takata
,
T.
, and
Ohshima
,
H.
,
2020
, “
Development of Multi-Level Multi-Scenario Simulation Systems for Sodium Cooled Fast Reactor (15) Development of Multi-Level Simulation System
,”
Atomic Energy Society of Japan 2020 Fall Meeting
, Online, Sept. 16–18, Paper No. 1G09 (in Japanese).
3.
Doda
,
N.
,
Uwaba
,
T.
,
Yokoyama
,
K.
,
Nemoto
,
T.
, and
Tanaka
,
M.
,
2022
, “
Development of Evaluation Method for Core Deformation Reactivity Feedback in Sodium-Cooled Fast Reactor by Coupled Analysis Approach
,”
Proceedings of the NURETH-19
, Online, Mar. 6–11, Log nr.: 35413.
4.
Uwaba
,
T.
,
Nemoto
,
J.
,
Ito
,
M.
,
Ishitani
,
I.
,
Doda
,
N.
,
Tanaka
,
M.
, and
Ohtsuka
,
S.
,
2021
, “
Development of an Integrated Computer Code System for Analyzing Irradiation Behaviors of a Fast Reactor Fuel
,”
Nucl. Technol.
,
207
(
8
), pp.
1280
1289
.10.1080/00295450.2020.1810977
5.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
6.
Kuwagaki
,
K.
, and
Yokoyama
,
K.
,
2022
, “
Applicability Study of Bayesian Optimization in Core Neutronic Design
,”
Atomic Energy Society of Japan 2022 Spring Meeting
, Online, Mar. 16–18, Paper No. 1C05 (in Japanese).
7.
Kuwagaki
,
K.
, and
Yokoyama
,
K.
,
2022
, “
Applicability Study of Bayesian Optimization in Core Neutronic Design Using a Toy Model
,”
Proceedings of the PHYSOR
, May 15–20, Pittsburgh, PA.10.13182/P HYSOR22-37348
8.
The Japan Society of Mechanical Engineers
,
2020
, “
Codes for Nuclear Power Generation Facilities, Rules on Design and Construction for Nuclear Power Plants
,” Section II: Fast Reactor Standards, Paper No. JSME S NC2-2020 (in Japanese).
9.
Yoshimura
,
K.
,
Doda
,
N.
,
Fujisaki
,
T.
,
Murakami
,
S.
, and
Tanaka
,
M.
,
2021
, “
Development of Multi-Level Simulation System for Sodium-Cooled Fast Reactor - Application of Coupled 1D-CFD Simulation to ULOF Test of EBR-II
,”
Proceedings of the MECJ-20
, Online, Sep. 13–16, p.
S08112
(in Japanese).
10.
Yoshimura
,
K.
,
Doda
,
N.
,
Tanaka
,
M.
,
Fujisaki
,
T.
,
Murakami
,
S.
, and
Vilim
,
R. B.
, “
Development of 1D-CFD Coupling Method Through Benchmark Analyses of SHRT Tests in EBR-II
,”
Proceedings of the NURETH-19
, Online, Mar. 6–11, Log nr.: 35495.
11.
International Atomic Energy Agency
,
2017
, “
Benchmark Analysis of EBR-II Shutdown Heat Removal Tests
,” IAEA, Vienna, Austria, Report No. TECDOC No. 1819.
12.
Takaya
,
S.
,
Asayama
,
T.
,
Yada
,
H.
,
Roberts
,
A. T.
, and
Schaaf
,
F. J.
, Jr.
,
2020
, “
Development of in-Service Inspection Rules for Liquid-Metal Cooled Reactors Using the System Based Code Concept
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021204
.10.1115/1.4044344
13.
Yada
,
H.
,
Takaya
,
S.
, and
Enuma
,
H.
,
2020
, “
Proposal of Inspection Rationalization Method and Application for Sodium Cooled Fast Reactor
,”
Proceedings of the ICONE2020
, Online, Aug. 4–5, Paper No. ICONE2020-16735.
14.
Aoyagi
,
M.
,
Uchibori
,
A.
,
Takata
,
T.
, and
Ohshima
,
H.
,
2020
, “
Sodium Fire Models for In- and Ex-Vessel Safety Analysis Code SPECTRA
,”
Proceedings of ANS Virtual Annual Meeting
, June 8–11,
122
(
1
), pp.
862
865
.
15.
Uchibori
,
A.
,
Aoyagi
,
M.
,
Takata
,
T.
, and
Ohshima
,
H.
,
2020
, “
Development of Ex-Vessel Phenomena Analysis Model for Multi-Scenario Simulation System, SPECTRA
,”
Proceedings of the ICONE2020
, Online, Aug. 4–5, Paper No. ICONE2020-16818.
16.
Uchibori
,
A.
,
Aoyagi
,
M.
,
Sonehara
,
M.
,
Takata
,
T.
, and
Ohshima
,
H.
,
2020
, “
Development of Multi-Level Multi-Scenario Simulation Systems for Sodium Cooled Fast Reactor (16) Development of Integrated Analysis System for in- and Ex-Vessel Phenomena
,” Atomic Energy Society of Japan Fall Meeting, Online, Sept. 16–18, Paper No. 1G10 (in Japanese).
17.
Tentner
,
A. M.
,
Weber
,
D. P.
, and
Birgersson
,
G.
,
1985
, “
The SAS4A LMFBR Whole Core Accident Analysis Code
,” Proceedings of the International Meeting on Fast Reactor Safety, Knoxville, TN, Apr. 21–24, pp.
989
998
.
18.
Kondo
,
S.
,
Tobita
,
Y.
,
Morita
,
K.
, and
Shirakawa
,
N.
,
1992
, “
SIMMER-III: An Advanced Computer Program for LMFBR Severe Accident Analysis
,”
Proceedings of the ANP'92
, Tokyo, Japan, Oct. 25–29, IV, p.
40
.
19.
Murata
,
K. K.
,
Carroll
,
D. E.
,
Washington
,
K. E.
,
Gelbard
,
F.
,
Valdez
,
G. D.
,
Williams
,
D. C.
, and
Bergeron
,
K. D.
,
1989
, “
User's Manual for CONTAIN 1.1 a Computer Code for Severe Nuclear Reactor Accident Containment Analysis
,” Sandia, Albuquerque, NM, Report No. SAND87-2309.
20.
Nakashima
,
F.
,
Kondo
,
S.
,
Usami
,
S.
,
Yamazaki
,
O.
,
Kaneko
,
Y.
,
Hazama
,
T.
,
Mitsumoto
,
R.
,
Takahashi
,
K.
, and
Kondo
,
S.
,
2020
, “
Prototype Fast Breeder Reactor Monju; Its History and Achievements
,” JAEA-Technology, Tokai, Japan, Report No. JAEA-Technology
2019
007
.
You do not currently have access to this content.