Abstract

The objective of this study was to present a prediction method for condensation heat transfer in the presence of noncondensable gas (air or nitrogen) for computational fluid dynamics (CFD) analyses, where physical quantities in the computational cells in contact with the structural wall are generally used. First, using existing temperature distributions T(y) in the turbulent boundary layer along a flat plate as functions of the distance y from the condensation surface, we evaluated the distribution of condensation heat flux qc,pre(y) from the gradient of steam concentration, we derived a modification factor η(y+) as a function of the dimensionless distance y+ to obtain a good agreement with qc,cal calculated by the qc correlation defined by using the bulk quantities; and we obtained qc,mod(y)/qc,cal = 0.90–1.10 for the region of y+ > 17. Second, we modified the local Sherwood number Sh(x) for flat plates for the boundary layer thickness δ and obtained the function Sh(δ). An existing qc correlation for flat plates as a function of Sh(δ) was applied to predict the distribution of the local value qc,pre(y), and qc,pre(y)/qc,cal = 0.95–1.15 in the best case was obtained for the region of y+ > 30. Finally, a correlation of the local Sherwood number Sh(y) was derived from the temperature distributions T(y) as a function of the local Reynolds number Re(y).

References

1.
de la Rosa
,
J. C.
,
Escrivá
,
A.
,
Herranz
,
L. E.
,
Cicero
,
T.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Review on Condensation on the Containment Structure
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
.10.1016/j.pnucene.2008.01.003
2.
Studer
,
E.
,
Abdo
,
D.
,
Benteboula
,
S.
,
Bernard-Michel
,
G.
,
Cariteau
,
B.
,
Coulon
,
N.
,
Dabbene
,
F.
,
Debesse
,
P.
,
Koudriakov
,
S.
,
Ledier
,
C.
,
Magnaud
,
J.-P.
,
Norvez
,
O.
,
Widloecher
,
J.-L.
,
Beccantini
,
A.
,
Gounand
,
S.
, and
Brinster
,
J.
,
2020
, “
Challenges in Containment Thermal Hydraulics
,”
Nucl. Technol.
,
206
(
9
), pp.
1361
1373
.10.1080/00295450.2020.1731406
3.
Green
,
J.
, and
Almenas
,
K.
,
1996
, “
An Overview of the Primary Parameters and Methods for Determining Condensation Heat Transfer to Containment Structures
,”
Nucl. Saf.
,
37
(
1
), pp.
26
48
.https://inis.iaea.org/search/search.aspx?orig_q=RN:28018780
4.
Huang
,
J.
,
Zhang
,
J.
, and
Wang
,
L.
,
2015
, “
Review of Vapor Condensation Heat and Mass Transfer in the Presence of Non-Condensable Gas
,”
Appl. Therm. Eng.
,
89
, pp.
469
484
.10.1016/j.applthermaleng.2015.06.040
5.
Legay-Desesquelles
,
F.
, and
Prunet-Foch
,
B.
,
1986
, “
Heat and Mass Transfer With Condensation in Laminar and Turbulent Boundary Layers Along a Flat Plate
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
95
105
.10.1016/0017-9310(86)90038-4
6.
Dehbi
,
A.
,
Janasz
,
F.
, and
Bell
,
B.
,
2013
, “
Prediction of Steam Condensation in the Presence of Noncondensable Gases Using a CFD-Based Approach
,”
Nucl. Eng. Des.
,
258
, pp.
199
210
.10.1016/j.nucengdes.2013.02.002
7.
Vyskocil
,
L.
,
Schmid
,
J.
, and
Macek
,
J.
,
2014
, “
CFD Simulation of Air–Steam Flow With Condensation
,”
Nucl. Eng. Des.
,
279
, pp.
147
157
.10.1016/j.nucengdes.2014.02.014
8.
Murase
,
M.
,
Utanohara
,
Y.
,
Goda
,
R.
,
Shimamura
,
T.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2019
, “
Measurements of Temperature Distributions and Condensation Heat Fluxes for Downward Flows of Steam-Air Mixture in a Circular Pipe
,”
Jpn. J. Multiphase Flow
,
33
(
4
), pp.
405
416
.10.3811/jjmf.2019.012
9.
Murase
,
M.
,
Utanohara
,
Y.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2020
, “
Condensation Heat Transfer for Downward Flows of Steam-Air Mixture in a Circular Pipe
,”
Jpn. J. Multiphase Flow
,
34
(
4
), pp.
510
519
.10.3811/jjmf.2020.029
10.
Murase
,
M.
,
Utanohara
,
Y.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2021
, “
Prediction Method of Condensation Heat Transfer From Steam-Air Mixture for CFD Application
,”
Jpn. J. Multiphase Flow
,
35
(
3
), pp.
453
462
.10.3811/jjmf.2021.028
11.
Akaki
,
H.
,
Kataoka
,
Y.
, and
Murase
,
M.
,
1995
, “
Measurement of Condensation Heat Transfer Coefficient Inside a Vertical Tube in the Presence of Noncondensable Gas
,”
J. Nucl. Sci. Technol.
,
32
(
6
), pp.
517
526
.10.1080/18811248.1995.9731739
12.
Liao
,
Y.
, and
Vierow
,
K.
,
2007
, “
A Generalized Diffusion Layer Model for Condensation of Vapor With Noncondensable Gases
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
8
), pp.
988
994
.10.1115/1.2728907
13.
Kang
,
H. C.
, and
Kim
,
M. H.
,
1999
, “
Characteristics of Film Condensation of Super-Saturated Steam-Air Mixture on a Flat Plate
,”
Int. J. Multiphase Flow
,
25
(
8
), pp.
1601
1618
.10.1016/S0301-9322(98)00077-9
14.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley and Sons, Inc
,
New York
.
15.
de la Rosa
,
J. C.
,
Herranz
,
L. E.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Analysis of the Suction Effect on the Mass Transfer When Using the Heat and Mass Transfer Analogy
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
2042
2055
.10.1016/j.nucengdes.2009.06.003
16.
Kays
,
M. K.
, and
Crawford
,
M. E.
,
1993
,
Heat, Mass and Momentum Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
17.
Johnson
,
H. A.
, and
Rubesin
,
M. W.
,
1949
, “
Aerodynamic Heating and Convection Heat Transfer – Summary of Literature Survey
,”
Trans. Am. Soc. Mech. Eng.
,
71
(
5
), pp.
447
456
.
18.
Schlichting
,
H.
,
1968
,
Boundary-Layer Theory
, 6th ed.,
McGraw-Hill
,
New York
, p.
599
.
You do not currently have access to this content.