Abstract

Two-phase flows including a phase change such as liquid–vapor flows play an important role in many industrial applications. A deeper understanding of the phase change phenomena is required to improve the performance and safety of nuclear power plants. For this purpose, we developed a phase change simulation method based on the phase-field method (PFM). The low computational efficiency of the conventional PFM based on the Cahn–Hilliard equation is an obstacle in practical simulations. To resolve this problem, we presented a new PFM based on the conservative Allen–Cahn equation including a phase change model. The wettability also needs to be considered in the phase change simulation. When we apply the conventional wetting boundary condition to the conservative Allen–Cahn equation, there is a problem that the mass of each phase is not conserved on the boundary. To resolve this issue, we developed the mass correction method which enables mass conservation in the wetting boundary. The proposed PFM was validated in benchmark problems. The results agreed well with the theoretical solution and other simulation results, and we confirmed that this PFM is applicable to the two-phase flow simulation including the phase change. We also investigated the computational efficiency of the PFM. In a comparison with the conventional PFM, we found that our proposed PFM was more than 100 times faster. Since computational efficiency is an important factor in practical simulations, the proposed PFM will be preferable in many industrial simulations.

References

1.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
,
1994
, “
Phase Distribution in Bubbly Two-Phase Flow in Vertical Ducts
,”
Int. J. Multiphase Flow
,
20
(
5
), pp.
805
818
.10.1016/0301-9322(94)90095-7
2.
Welch
,
S. W. J.
,
1998
, “
Direct Simulation of Vapor Bubble Growth
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1655
1666
.10.1016/S0017-9310(97)00285-8
3.
Son
,
G.
, and
Dhir
,
V. K.
,
1997
, “
Numerical Simulation of Saturated Film Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
525
533
.10.1115/1.2824132
4.
Juric
,
D.
, and
Tryggvason
,
G.
,
1998
, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
387
410
.10.1016/S0301-9322(97)00050-5
5.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
6.
Welch
,
S. W. J.
, and
Rachidi
,
T.
,
2002
, “
Numerical Computation of Film Boiling Including Conjugate Heat Transfer
,”
Numer. Heat Transfer, Part B Fundam.
,
42
(
1
), pp.
35
53
.10.1080/10407790190053824
7.
Agarwal
,
D. K.
,
Welch
,
S. W. J.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
329
338
.10.1115/1.1737779
8.
Son
,
G.
, and
Dhir
,
V. K.
,
1998
, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Methods
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
183
192
.10.1115/1.2830042
9.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
10.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
11.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
,
1998
, “
Diffuse-Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
139
165
.10.1146/annurev.fluid.30.1.139
12.
Jacqmin
,
D.
,
1999
, “
Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys
,
155
(
1
), pp.
96
127
.10.1006/jcph.1999.6332
13.
Jamet
,
D.
,
Lebaigue
,
O.
,
Coutris
,
N.
, and
Delhaye
,
J. M.
,
2001
, “
The Second Gradient Method for the Direct Numerical Simulation of Liquid-Vapor Flows With Phase Change
,”
J. Comput. Phys
,
169
(
2
), pp.
624
651
.10.1006/jcph.2000.6692
14.
Yue
,
P.
,
Feng
,
J.
,
Liu
,
C.
, and
Shen
,
J.
,
2004
, “
A Diffuse-Interface Method for Simulating Two Phase Flow of Complex Fluids
,”
J. Fluid Mech.
,
515
, pp.
293
317
.10.1017/S0022112004000370
15.
Dong
,
S.
,
2012
, “
On Imposing Dynamic Contact-Angle Boundary Conditions for Wall-Bounded Liquid–Gas Flows
,”
Comput. Methods Appl. Mech. Eng.
,
247–248
, pp.
179
200
.10.1016/j.cma.2012.07.023
16.
Dong
,
S.
, and
Shen
,
J.
,
2012
, “
A Time-Stepping Scheme Involving Constant Coefficient Matrices for Phase Field Simulations of Two-Phase Incompressible Flows With Large Density Ratios
,”
J. Comput. Phys.
,
231
(
17
), pp.
5788
5804
.10.1016/j.jcp.2012.04.041
17.
Badalassi
,
V. E.
,
Ceniceros
,
H. D.
, and
Banerjee
,
S.
,
2003
, “
Computation of Multiphase Systems With Phase Field Models
,”
J. Comput. Phys.
,
190
(
2
), pp.
371
397
.10.1016/S0021-9991(03)00280-8
18.
Jacqmin
,
D.
,
2000
, “
Contact-Line Dynamics of a Diffuse Fluid Interface
,”
J. Fluid Mech.
,
402
, pp.
57
88
.10.1017/S0022112099006874
19.
Chiu
,
P. H.
, and
Lin
,
Y. T.
,
2011
, “
A Conservative Phase Field Method for Solving Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
230
(
1
), pp.
185
204
.10.1016/j.jcp.2010.09.021
20.
Kim
,
J.
,
Lee
,
S.
, and
Choi
,
Y.
,
2014
, “
A Conservative Allen–Cahn Equation With a Space–Time Dependent Lagrange Multiplier
,”
Int. J. Eng. Sci.
,
84
, pp.
11
17
.10.1016/j.ijengsci.2014.06.004
21.
Jeong
,
D.
, and
Kim
,
J.
,
2017
, “
Conservative Allen–Cahn–Navier–Stokes System for Incompressible Two-Phase Fluid Flows
,”
Comput. Fluids
,
156
, pp.
239
246
.10.1016/j.compfluid.2017.07.009
22.
Lee
,
D.
, and
Kim
,
J.
,
2016
, “
Comparison Study of the Conservative Allen–Cahn and the Cahn–Hilliard Equations
,”
Math. Compt. Simul.
,
119
, pp.
35
56
.10.1016/j.matcom.2015.08.018
23.
Aihara
,
S.
,
Takaki
,
T.
, and
Takada
,
N.
,
2019
, “
Multi-Phase-Field Modeling Using a Conservative Allen–Cahn Equation for Multiphase Flow
,”
Comput. Fluids
,
15
, pp.
141
151
.10.1016/j.compfluid.2018.08.023
24.
Sun
,
S.
,
Li
,
J.
,
Zhao
,
J.
, and
Wang
,
Q.
,
2020
, “
Structure-Preserving Numerical Approximations to a Non-Isothermal Hydrodynamic Model of Binary Fluid Flows
,”
J. Sci. Comput.
,
83
(
3
), p.
50
.10.1007/s10915-020-01229-6
25.
Li
,
J.
,
Zhao
,
J.
, and
Wang
,
Q.
,
2019
, “
Energy and Entropy Preserving Numerical Approximations of Thermodynamically Consistent Crystal Growth Models
,”
J. Comput. Phys.
,
382
, pp.
202
220
. 10.1016/j.jcp.2018.12.033
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
27.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.10.1103/RevModPhys.69.931
28.
Jasak
,
H.
, and
Weller
,
H. G.
,
2000
, “
Application of the Finite Volume Method and Unstructured Meshes to Linear Elasticity
,”
Int. J. Numer. Eng.
,
48
(
2
), pp.
267
287
.10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
29.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D thesis,
Imperial College London
, London.
30.
Sun
,
D.
,
Xu
,
J. L.
, and
Wang
,
L.
,
2012
, “Development of a Vapor-Liquid Phase Change Model for Volume-of-Fluid Method in FLUENT,”
Int. Comm. Heat and Mass Transfer
, 39, pp. 1101–1106.10.1016/j.icheatmasstransfer.2012.07.020
31.
Guo
,
D. Z.
,
Sun
,
D. L.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2011
, “
Phase Change Heat Transfer Simulation for Boiling Bubbles Arising From a Vapor Film by VOSET Method
,”
Numer. Heat Transfer Part A
,
59
(
11
), pp.
857
881
.10.1080/10407782.2011.561079
32.
Fakhari
,
A.
, and
Bolster
,
D.
,
2017
, “
Diffuse Interface Modeling of Three-Phase Contact Line Dynamics on Curved Boundaries: A Lattice Boltzmann Model for Large Density and Viscosity Ratios
,”
J. Comput. Phys.
,
334
, pp.
620
638
.10.1016/j.jcp.2017.01.025
33.
Ryu
,
S.
, and
Ko
,
S.
,
2012
, “
Direct Numerical Simulation of Nucleate Pool Boiling Using a Two-Dimensional Lattice Boltzmann Method
,”
Nucl. Eng. Des.
,
248
, pp.
248
262
.10.1016/j.nucengdes.2012.03.031
34.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.10.1016/j.ijheatmasstransfer.2015.02.008
You do not currently have access to this content.