Abstract

The nuclear safety approach has to cover accident sequences involving core degradation in order to develop reliable mitigation strategies for both existing and future reactors. In particular, the long-term stabilization of the degraded core materials and their coolability has to be ensured after a severe accident. This paper focuses on severe accident phenomena in pressurized water reactors (PWR) compared to those potentially occurring in future GenIV-type sodium fast reactors (SFR). First, the two considered reactor concepts are introduced by focusing on safety aspects. The severe accident scenarios leading to core melting are presented and the initiating events are highlighted. This paper focuses on in-vessel severe accident phenomena, including the chronology of core damage, major changes in the core configuration and molten core progression. Regarding the mitigation means, the in-vessel retention phenomena and the core catcher characteristics are reviewed for these different nuclear generation concepts (II, III, and IV). A comparison between the PWR and SFR severe accident evolution is provided as well as the relation between governing physical parameters and the adopted mitigation provisions for each reactor concept. Finally, it is highlighted how the robustness of the safety demonstration is established by means of a combined probabilistic and deterministic approach.

References

1.
Bertrand
,
F.
,
Bassi
,
C.
,
Bentivoglio
,
F.
,
Méssié
,
A.
,
Tosselo
,
A.
, and
Malo
,
J. Y.
,
2008
, “
Preliminary Safety Analysis of the 2400 MWth Gas-Cooled Fast Reactor, International Conference on Advances in Nuclear Power Plants
,”
Proceedings of the ICAPP
,
Anaheim, CA
, June 8–12, pp.
228
237
.
2.
IRSN
,
2020
, “
Research and development With Regard to Severe Accidents in Pressurised Water Reactors: Summary and Outlook, Rapport IRSN-2007/83, Rapport CEA-2007/351
,”
IRSN
,
CEA, France
, accessed July 22, 2020 https://www.irsn.fr/EN/Research/publications-documentation/Publications/DSR/SAGR/Documents/rapport_RetD_AG_VA.pdf
3.
Kim
,
Y.
,
2015
, “
A Comparison of SFR and PWR in View of the Core Design and Characteristics
,”
KNS Fall Meeting Workshop on the PGSFR
,
Gyungju, South Korea
, Oct. 28.https://www.kns.org/boards/download/1829
4.
Kadak
,
A. C.
,
2017
, “
A Comparison of Advanced Nuclear Technologies
,”
Columbia University
,
New York
, accessed July 22, 2020, https://energypolicy.columbia.edu/sites/default/files/A%20Comparison%20of%20Nuclear%20Technologies%20033017.pdf
5.
Micaelli
,
J. C.
,
2014
, “
EC-SARNET Project representation, EC-SARNET/FI6O-CT-2004-509065
,”
IRSN-DPAM
,
St-Paul-lez-Durance, France
, accessed July 22, 2020, https://www.irsn.fr/EN/Research/Research-organisation/Research-programmes/Documents/sarnet_pres_reduite.pdf
6.
Bertrand
,
F.
,
Germain
,
T.
,
Bentivoglio
,
F.
,
Bonnet
,
F.
,
Moyart
,
Q.
, and
Aujollet
,
P.
,
2011
, “
Safety Study of the Coupling of a VHTR With a Hydrogen Production Plant
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2580
2596
.10.1016/j.nucengdes.2011.04.036
7.
Bertrand
,
F.
,
Bassi
,
C.
,
Bentivoglio
,
F.
,
Audubert
,
F.
,
Guéneau
,
C.
,
Rimpault
,
G.
, and
Journeau
,
C.
,
2012
, “
Synthesis of the Safety Studies Carried Out on the GFR2400
,”
Nucl. Eng. Des.
,
253
, pp.
161
182
.10.1016/j.nucengdes.2012.08.002
8.
Bertrand
,
F.
,
Marie
,
N.
,
Prulhière
,
G.
,
Lecerf
,
J.
, and
Seiler
,
J. M.
,
2016
, “
Comparison of the Behaviour of Two Core Designs for ASTRID in Case of Severe Accidents
,”
Nucl. Eng. Des.
,
297
, pp.
327
342
.10.1016/j.nucengdes.2015.04.020
9.
Bertrand
,
F.
,
Marie
,
N.
,
Bachrata
,
A.
,
Droin
,
J. B.
, and
Manchon
,
X.
,
2019
, “
Simplified Thermohydraulic Criteria for a Comparison of the Accidental Behaviour of Gen IV Nuclear Reactors and of PWRs
,”
Proceedings of the 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
,
NURETH, Portland, OR
, Aug. 18–23, pp.
2483
2496
.
10.
Serre
,
F.
,
Bertrand
,
F.
,
Bachrata
,
A.
,
Marie
,
N.
,
Kubo
,
S.
,
Kamiyama
,
K.
,
Carluec
,
B.
,
Farges
,
B.
, and
Koyama
,
K.
,
2017
, “
France-Japan Collaboration on the Severe Accident Studies for ASTRID: Outcomes and Future Work Program
,”
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP)
,
Fukui and Kyoto, Japan
, Apr. 24–28, pp.
24
25
.
11.
JAEA
,
2020
, “
Joyo User's Guide, JAEA
,”
JAEA
,
Tokyo, Japan
, accessed July 22,
2020
, https://www.jaea.go.jp/04/o-arai/joyo_users_guide/joyomk3/index.html
12.
Yang
,
J.
,
Liang
,
R.
,
Lin
,
Z.
,
Huang
,
X.
, and
Wang
,
T.
,
2017
, “
Transient Analysis of AP1000 NPP Under the Similar Fukushima Accident Conditions
,”
Nucl. Eng. Des.
,
108
, pp.
181
187
.10.1016/j.anucene.2017.04.026
13.
Bachrata
,
A.
,
Trotignon
,
L.
,
Sciora
,
P.
, and
Saez
,
M.
,
2019
, “
A Three-Dimensional Neutronics—Thermalhydraulics Unprotected Loss of Flow Simulation in Sodium-Cooled Fast Reactor With Mitigation Devices
,”
Nucl. Eng. Des.
,
346
, pp.
1
9
.10.1016/j.nucengdes.2019.02.015
14.
Bertrand
,
F.
,
Marie
,
N.
,
Bachrata
,
A.
,
Brun-Magaud
,
V.
,
Droin
,
J. B.
,
Manchon
,
X.
,
Herbreteau
,
K.
,
Farges
,
B.
,
Carluec
,
B.
,
Poumerouly
,
S.
, and
Lemasson
,
D.
,
2018
, “
Status of Severe Accident Studies at the End of the Conceptual Design of ASTRID: Feedback on Mitigation Features
,”
Nucl. Eng. Des.
,
326
, pp.
55
64
.10.1016/j.nucengdes.2017.10.019
15.
Magallon
,
D.
,
Mailliat
,
A.
,
Seiler
,
J.-M.
,
Atkhen
,
K.
,
Sjövall
,
H.
,
Dickinson
,
S.
,
Jakab
,
J.
,
Meyer
,
L.
,
Buerger
,
M.
,
Trambauer
,
K.
,
Fickert
,
L.
,
Sehgal
,
B. R.
,
Hozer
,
Z.
,
Bagues
,
J.
,
Martin-Fuentes
,
F.
,
Zeyen
,
R.
,
Annunziato
,
A.
,
El-Shanawany
,
M.
,
Guentay
,
S.
,
Tinkler
,
C.
,
Turland
,
B.
, and
Puebla
,
L. E. H.
,
2005
, “
European Expert Network for the Reduction of Uncertainties in Severe Accident Safety Issues (EURSAFE)
,”
Nucl. Eng. Des.
,
235
(
2–4
), pp.
309
346
.10.1016/j.nucengdes.2004.08.042
16.
Bachrata
,
A.
,
Fichot
,
F.
,
Repetto
,
G.
,
Quintard
,
M.
, and
Fleurot
,
J.
,
2012
, “
Contribution to Modeling of the Reflooding of a Severely Damaged Reactor Core Using PRELUDE Experimental Results
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
,
Chicago, IL
, June 24–28, pp.
1864
1872
. https://www.researchgate.net/publication/282707795_Contribution_to_modeling_of_the_reflooding_of_a_severely_damaged_reactor_core_using_PRELUDE_experimental_results
17.
Bachrata
,
A.
,
Fichot
,
F.
,
Repetto
,
G.
,
Quintard
,
M.
, and
Fleurot
,
J.
,
2012
, “
Non-Local Equilibrium Two-Phase Flow Model With Phase Change in Porous Media and Its Application to Reflooding of a Severely Damaged Reactor Core
,”
AIP Conf. Proc.
,
1453
(
1
), pp.
147
152
.10.1063/1.4711167
18.
Manchon
,
X.
,
Bertrand
,
F.
,
Marie
,
N.
,
Lance
,
M.
, and
Schmitt
,
D.
,
2017
, “
Modeling and Analysis of Molten Fuel Vaporization and Expansion for a Sodium Fast Reactor Severe Accident
,”
Nucl. Eng. Des.
,
322
, pp.
522
535
.10.1016/j.nucengdes.2017.07.010
19.
Matsuo
,
E.
,
Sasa
,
K.
,
Koyama
,
K.
,
Yamano
,
H.
,
Kubo
,
S.
,
Marie
,
N.
,
Hourcade
,
E.
,
Bachrata
,
A.
,
Bertrand
,
F.
, and
Dirat
,
J. F.
,
2019
, “
Coolability Evaluation of Debris Bed on Core Catcher in a Sodium-Cooled Fast Reactor
,”
Proceedings of the International Conference on Nuclear Engineering, Proceedings (ICONE)
,
Tsukuba, Ibaraki, Japan
, May 19–24, Paper No. Code 150404.10.1299/jsmeicone.2019.27.1292
20.
Miassoedov
,
A.
,
Godin-Jacqmin
,
L.
,
Bachrata
,
A.
,
Cron
,
T.
,
Gaus-Liu
,
X.
, and
Wenz
,
T.
,
2008
, “
Application of the ASTEC V1 Code to the live-L1 Experiment
,”
International Conference on Advances in Nuclear Power Plants (ICAPP)
,
Anaheim, CA
, June 8-12, pp.
1261
1269
.
21.
Seiler
,
N.
,
Bachrata
,
A.
, and
Bertrand
,
F.
,
2015
, “
Comparison of an Advanced Analytical Tool With the Simmer Code to Support Astrid Severe Accident Mitigation Studies
,”
Proceedings of International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH
,
Chicago, IL
, Aug. 30–Sept. 4, pp.
6771
6782
.https://hal-cea.archives-ouvertes.fr/cea-02506786/document
22.
Tellier
,
R.
,
Saas
,
L.
, and
Bajard
,
S.
,
2015
, “
Transient Stratification Modelling of a Corium Pool in a LWR Vessel Lower Head
,”
Nucl. Eng. Des.
,
287
, pp.
68
77
.10.1016/j.nucengdes.2015.02.009
23.
Bachrata
,
A.
,
Fichot
,
F.
,
Repetto
,
G.
,
Quintard
,
M.
, and
Fleurot
,
J.
,
2012
, “
Code Simulation of Quenching of a High Temperature Debris Bed: Model Improvement and Validation With Experimental Results
,”
ASME Paper No. ICONE20-POWER2012-54221
.10.1115/ICONE20-POWER2012-54221
24.
Seiler
,
J. M.
, and
Tourniaire
,
B.
,
2014
, “
A Phenomenological Analysis of Melt Progression in the Lower Head of a Pressurized Water Reactor
,”
Nucl. Eng. Des.
,
268
, pp.
87
95
.10.1016/j.nucengdes.2013.12.043
25.
Bachrata
,
A.
,
2010
,
In Vessel Retention Via External Reactor Cooling Detention of Molten Core of the Reactor Pressure Vessel Using the Reactor Pit Flooding
,
LAP Lambert Academic Publishing
,
Saarbrücken, Germany
.
26.
Fischer
,
M.
,
Bechta
,
S. V.
,
Bezlepkin
,
V. V.
,
Hamazaki
,
R.
, and
Miassoedov
,
A.
,
2016
, “
Core Melt Stabilization Concepts for Existing and Future LWRs and Associated Research and Development Needs
,”
Nucl. Technol.
,
196
(
3
), pp.
524
537
.10.13182/NT16-19
27.
Bouteille
,
F.
,
Azarian
,
G.
,
Bittermann
,
D.
,
Brauns
,
J.
, and
Eyink
,
J.
,
2006
, “
The EPR Overall Approach for Severe Accident Mitigation
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1464
1470
.10.1016/j.nucengdes.2006.04.013
28.
Svetlov
,
S.
,
Bezlepkin
,
V.
,
Kukhtevich
,
I.
,
Bechta
,
S.
,
Granovsky
,
V.
,
Khabensky
,
V.
,
Asmolov
,
V.
,
Proklov
,
V.
,
Sidorov
,
A.
,
Nedorezov
,
A.
,
Strizhov
,
V.
,
Gusarov
,
V.
, and
Udalov
,
Y.
,
2003
, “
Core Catcher for Tianwan NPP With VVER-1000 Reactor. Concept, Design and Justification
,”
Proceedings of the International Conference on Nuclear Engineering (ICONE)
.
29.
Fichot
,
F.
,
Bachrata
,
A.
,
Repetto
,
G.
,
Fleurot
,
J.
, and
Quintard
,
M.
,
2012
, “
Quenching of a Highly Superheated Porous Medium by Injection of Water
,”
J. Phys.: Conf. Ser.
,
395
(
1
), p.
012144
.10.1088/1742-6596/395/1/012144
30.
Tobita
,
Y.
,
Yamano
,
H.
, and
Sato
,
I.
,
2008
, “
Analytical Study on Elimination of Severe Recriticalities in Large Scale LMFBRS With Enhancement of Fuel Discharge
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
57
65
.10.1016/j.nucengdes.2007.04.014
31.
Asmolov
,
V.
, and
Tsurikov
,
D.
,
2004
, “
MASCA Project: Major Activities and Results
,”
Kurchatov Institute
,
Moscow, Russia
, accessed June 22, 2020, nea.org/nsd/workshops/masca2004/oc/papers/RF_ASM_M_Activities.pdf
32.
Journeau
,
C.
,
Buffe
,
L.
, and
Cassiaut-Louis
,
N.
,
2014
, “
PLINIUS-2 a New Versatile Platform for Severe Accident Assessments
,”
Proceedings of the Tenth International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10)
,
Tokyo, Japan
, Dec. 14–18, p.
2846
.
33.
Naitoh
,
M.
,
Hosoda
,
S.
, and
Allison
,
C.
, “
Assessment of Water Injection as Severe Accident Management Using SAMPSON Code
,” Case No. 13–50925.
34.
NEA
,
2014
, “
NEA Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) Project
,”
OECD/NEA
,
France
, accessed July 22, 2020, https://www.oecd-nea.org/jointproj/bsaf.html
35.
Seiler
,
N.
,
Bachrata
,
A.
,
Seiler
,
J. M.
,
Barjot
,
F.
,
Marrel
,
A.
,
Gossé
,
S.
, and
Bertrand
,
F.
,
2016
, “
A Physical Tool for Severe Accident Mitigation Studies
,”
Nucl. Eng. Des.
,
309
, pp.
224
235
.10.1016/j.nucengdes.2016.08.042
36.
Droin
,
J.-B.
,
Marie
,
N.
,
Bachrata
,
A.
,
Bertrand
,
F.
,
Merle
,
E.
, and
Seiler
,
J.-M.
,
2017
, “
Physical Tool for Unprotected Loss of Flow Transient Simulations in a Sodium Fast Reactor
,”
Ann. Nucl. Energy
,
106
, pp.
195
210
.10.1016/j.anucene.2017.03.035
You do not currently have access to this content.