Abstract

The sodium–concrete reaction (SCR) is an important phenomenon during severe accidents in sodium-cooled fast reactors (SFRs), as it generates large volumes of hydrogen and aerosols in the containment vessel along with structural concrete ablation. In this study, the chemical reaction beneath the internal heater (800 °C) was investigated in SCR experiments with internal heating. The experiments simulate the effects of obstacles and heating on the SCR. Especially, we focused on the concrete ablation phenomenon because the hydrogen generation is sourced from the moisture in the concrete. The effects of internal heating on the self-termination mechanism are also discussed. The internal heater on the concrete hindered the transport of sodium (Na) into the concrete. Therefore, the reaction between Na and the concrete began at the periphery of the internal heater, where the concrete ablation depth was larger than under the internal heater. The high Na pool temperature (800 °C) largely increased the Na aerosol-release rate, which was explained by Na evaporation and formed a porous reaction-product layer. The Si mass balance and image mapping by an electron-probe micro-analyzer yielded consistent porosities in the reaction-product layer (0.54–0.59). The porous reaction products suppressed the amount of Na transported into the reaction front. Regardless of the internal heater placement, the Na concentration around the reaction front was limited to around 30 wt %. The Na concentration condition was dominantly responsible for the self-termination of the internally heated SCR.

References

1.
Luster
,
V. P.
, and
Freudenstein
,
K. F.
,
1996
, “
Feedback From Practical Experience With Large Sodium Fire Accidents
,”
Technical Committee Meeting on Evaluation of Radioactive Materials Release and Sodium Fires in Fast Reactors
, Ibaraki, Japan, Nov. 11–14, pp.
233
254
. https://www.osti.gov/etdeweb/servlets/purl/21330020
2.
 
Denman
,
M.
,
LaChance
,
J.
,
Sofu
,
T.
,
Flanagan
,
G.
,
Wigeland
,
R.
, and
Bari
,
R.
,
2012
, “
Sodium Fast Reactor Safety and Licensing Research Plan—Volume I
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2012-4260
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2012/124260.pdf
3.
 
Copus
,
E. R.
,
Blose
,
R. E.
,
Brockmann
,
J. E.
,
Gomez
,
R. D.
, and
Lucero
,
D. A.
,
1989
, “
Core-Concrete Interactions Using Molten Steel With Zirconium on a Basaltic Basemat: The SURC-4 Experiment
,” United States Nuclear Regulatory Commission, Rockville, MD, Report No. NUREG/CR–4994.
4.
 
Farmer
,
M. T.
,
Lomperski
,
S.
,
Kilsdonk
,
D. J.
, and
Aeschlimann
,
R. W.
,
2006
, “
OECD MCCI Project 2-D Core Concrete Interaction (CCI) Tests: Final Report
,” Argonne National Laboratory, Argonne, IL, Report No. OECD/MCCI-2005-TR05.
5.
 
Powers
,
D. A.
,
Dahlgren
,
D. A.
,
Muir
,
J. F.
, and
Murfin
,
W. D.
,
1978
, “
Exploratory Study of Molten Core Material/Concrete Interactions
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND77-2042.
6.
Kawaguchi
,
M.
,
Miyahara
,
S.
, and
Uno
,
M.
,
2018
, “
A Study on Self-Terminating Behavior of Sodium–Concrete Reaction (2
),”
J. Nucl. Sci. Technol.
,
55
(
8
), pp.
874
884
.10.1080/00223131.2018.1449677
7.
 
Unemoto
,
T.
,
Takasaki
,
S.
,
Okamoto
,
H.
,
Hashimoto
,
Y.
,
Arakawa
,
T.
,
Sasagawa
,
Y.
, and
Katoh
,
K.
,
1982
, “
Experimental Studies on Sodium-Concrete Reactions
,” Japan Atomic Energy Agency, Tokai, Japan, Report No. PNC TJ 270 82-02 (in Japanese).
8.
 
McCormick
,
M. W.
,
Muhlestein
,
L. D.
,
Colburn
,
R. P.
, and
Winkel
,
B. V.
,
1981
, “
Large-Scale Sodium-Basalt Concrete Reaction Test LSC-1
,” Hanford Engineering Development Laboratory, Richland, WA, Report No. HEDL-TME-80-57.
9.
 
Colburn
,
R. P.
,
Muhlestein
,
L. D.
,
Haseberger
,
J. A.
, and
Mahncke
,
A. J.
,
1979
, “
Sodium Concrete Reactions
,” Hanford Engineering Development Laboratory, Richland, WA, Report No. HEDL-SA-1716-FP.
10.
 
Suo-Anttila
,
A. J.
,
1983
, “
SLAM: A Sodium-Limestone Concrete Ablation Model
,” Sandia National Laboratories, Albuquerque, NM, Report No. NUREG/CR-3379.
11.
Miyake
,
O.
,
Seino
,
H.
,
Takai
,
T.
, and
Hara
,
H.
,
1992
, “
Development of CONTAIN Code for FBR Severe Accident Analysis
,”
Proceedings of ANP'92 International Conference on Design and Safety of Advanced Nuclear Power Plants
, Tokyo, Japan, Oct. 25–29, Vol.
4
, pp.
41.4
/
1–41.4/5
.
12.
Cheung
,
F. B.
,
Pedersen
,
D. R.
, and
Nguyen
,
D. H.
,
1986
, “
Modeling of Core Debris-Sodium-Concrete Interactions
,”
Proceedings of Sixth Information Exchange Meeting on Debris Coolability
, Los Angeles, CA, Paper No. EPRI-NP-4455, pp.
21.1
21.10
.
13.
Kawaguchi
,
M.
,
Doi
,
D.
,
Seino
,
H.
, and
Miyahara
,
S.
,
2016
, “
A Study on Self-Terminating Behavior of Sodium–Concrete Reaction
,”
J. Nucl. Sci. Technol.
,
53
(
12
), pp.
2098
2107
.10.1080/00223131.2016.1199979
14.
Kawaguchi
,
M.
,
Miyahara
,
S.
, and
Uno
,
M.
,
2019
, “
Melting Behavior and Thermal Conductivity of Solid Sodium-Concrete Reaction Product
,”
J. Nucl. Sci. Technol.
,
56
(
6
), pp.
513
520
.10.1080/00223131.2019.1599744
15.
Ohno
,
S.
,
Hiroshi
,
S.
, and
Miyahara
,
S.
,
2010
, “
Development of Level 2 PSA Methodology for Sodium-Cooled Fast Reactors-(6) Development of Technical Basis in Ex-Vessel Accident Sequences
,”
Proceedings of Eighth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8)
, Shanghai, China, Oct. 10–14, Paper No. N8P0139.
16.
Nakai
,
R.
,
Suzuki
,
T.
,
Kamiyama
,
K.
,
Seino
,
H.
,
Koyama
,
K.
, and
Morita
,
K.
,
2010
, “
Development of Level 2 PSA Methodology for Sodium-Cooled Fast Reactors (1) Overview of Evaluation Technology Development
,”
Proceedings of Eighth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8)
, Shanghai, China, Oct. 10–14, Paper No. N8P0095.
17.
Knoche
,
R.
,
Dingwell
,
D. B.
,
Seifert
,
F. A.
, and
Webb
,
S. L.
,
1994
, “
Non-Linear Properties of Supercooled Liquids in the System Na2O-SiO2
,”
Chem. Geol.
,
116
(
1–2
), pp.
1
16
.10.1016/0009-2541(94)90154-6
18.
Miyahara
,
S.
,
Haga
,
K.
, and
Himeno
,
Y.
,
1992
, “
Sodium Aerosol Release Rate and Nonvolatile Fission Product Retention Factor During a Sodium-Concrete Reaction
,”
Nucl. Technol.
,
97
(
2
), pp.
212
226
.10.13182/NT92-A34617
19.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
(Oxford Engineering Science Series), 3rd ed.,
Oxford University Press
,
Oxford
, UK, Chap.
10
.
20.
Kumada
,
T.
,
Ishiguro
,
R.
, and
Kimachi
,
Y.
,
1979
, “
Diffusion Coefficients of Sodium Vapors in Argon and Helium
,”
J. Nucl. Sci. Technol.
,
70
(
1
), pp.
73
81
.10.13182/NSE79-A18929
21.
Kawaguchi
,
M.
,
Miyahara
,
S.
, and
Uno
,
M.
,
2018
, “
Thermophysical Properties of Sodium-Concrete Reaction Products
,”
Netsu Sokutei
,
41
(
1
), pp.
2
8
(in Japanese).
You do not currently have access to this content.