Abstract

In this study, the fatigue damage in type 304 stainless steel was estimated using an inherent magnetic sensor via plane-bending fatigue tests and the electromagnetic impedance method. The sensor was a magnetic composite material incorporating a ferromagnetic martensite phase generated in type 304 stainless steel by a surface finish process during the production stage. The output properties of this sensor as a function of the number of cycles were evaluated under various conditions. It was demonstrated that this sensor could detect fatigue damage starting from the zeroth cycle. The sensor output repeatability was evaluated, and the variation in the output between the inherent magnetic sensors was approximately 10% regardless of the sensor type and total strain amplitude. By using the two proposed estimation methods, the specific fatigue level and the number of cycles could be estimated with errors of 3–27%. These results indicated that the inherent magnetic sensor was suitable for use for fatigue damage estimation.

References

1.
Lagneborgj
,
R.
,
1964
, “
The Martensite Transformation in 18% Cr-8% Ni Steels
,”
Acta Metall.
,
12
(
7
), pp.
823
843
.
2.
Mumtaz
,
K.
,
Takahashi
,
S.
,
Echigoya
,
J.
,
Kamada
,
K.
,
Zhang
,
L. F.
,
Kikuchi
,
H.
,
Ara
,
K.
, and
Sato
,
M.
,
2004
, “
Magnetic Measurements of Martensitic Transformation in Austenitic Stainless Steel After Room Temperature Rolling
,”
J. Mater. Sci.
,
39
(
1
), pp.
85
97
.
3.
Li
,
H.
,
Chen
,
Z.
,
Li
,
Y.
,
Takagi
,
T.
,
Uchimoto
,
T.
,
Chigusa
,
N.
, and
Yoshida
,
Y.
,
2012
, “
Dependence of Deformation-Induced Magnetic Field on Plastic Deformation for SUS304 Stainless Steel
,”
Int. J. Appl. Electromagn. Mech.
,
38
(
1
), pp.
17
26
.
4.
Shiozawa
,
D.
,
Nakai
,
Y.
, and
Eijima
,
Y.
,
2007
, “
Fatigue Damage Evaluation of SUS304 Steel Using Magnetism Change in Fatigue Process
,”
Proceedings of the APCFS ’07 and ATEM ’07
,
Fukuoka, Japan
,
Sept. 12–14
,
Vol. 1
, pp.
12
14
.
5.
Oka
,
M.
,
Tsuchida
,
Y.
,
Nagato
,
S.
,
Yakushiji
,
T.
, and
Enokizono
,
M.
,
2008
, “
Estimation of Fatigue Damage for an Austenitic Stainless Steel (SUS304) Using a Pancake Type Coil
,”
AIP Conf. Proc.
,
975
(
1
), pp.
1244
1251
.
6.
Niffenegger
,
M.
, and
Leber
,
H. J.
,
2008
, “
Sensitivity of the Magnetization Curves of Different Austenitic Stainless Tube and Pipe Steels to Mechanical Fatigue
,”
J. Nucl. Mater.
,
377
(
2
), pp.
325
330
.
7.
Das
,
A.
,
2014
, “
Magnetic Properties of Cyclically Deformed Austenite
,”
J. Magn. Mater.
,
361
, pp.
232
242
.
8.
Talonen
,
J.
,
Aspegren
,
P.
, and
Hänninen
,
H.
,
2004
, “
Comparison of Different Methods for Measuring Strain Induced α′ Martensite Content in Austenitic Steels
,”
Mater. Sci. Technol.
,
20
(
12
), pp.
1506
1512
.
9.
Kinoshita
,
K.
,
Hasegawa
,
Y.
, and
Matsumoto
,
E.
,
2012
, “
Nondestructive Method for Evaluation of Deterioration of Austenitic Stainless Steel Using Initial Magnetic Phase
,”
Int. J. Appl. Electromagn. Mech.
,
39
(
1–4
), pp.
375
380
.
10.
Kinoshita
,
K.
,
Nakazaki
,
R.
, and
Matsumoto
,
E.
,
2014
, “
Variation of the Magnetic Properties of the Martensite Phase of SUS304 Steel Due to Tensile Deformation
,”
Int. J. Appl. Electromagn. Mech.
,
45
(
1–4
), pp.
45
52
.
11.
Kinoshita
,
K.
,
2017
, “
Refinement of the Magnetic Composite Model of Type 304 Stainless Steel by Considering Misoriented Ferromagnetic Martensite Particles
,”
AIP Adv.
,
7
(
5
), p.
056008
.
12.
Kinoshita
,
K.
,
2020
, “
Evaluation of Magnetic Properties in Ferromagnetic Martensite Particle Using Type 304 Stainless Steel Wire
,”
AIP Adv.
,
10
(
1
), p.
015313
.
13.
Tomimoto
,
Y.
, and
Kinoshita
,
K.
,
2016
, “
Visualization of Martensite and Analysis of Magnetic Property in SUS304 Steel
,”
Proceedings of the 25th MAGDA Conference
,
Kiryu, Japan
,
Nov. 24–25
, pp.
226
227
(in Japanese).
14.
Taya
,
M.
,
2005
,
Electronic Composites
,
Cambridge University Press
.
15.
Shintani
,
T.
, and
Murata
,
Y.
,
2011
, “
Evaluation of the Dislocation Density and Dislocation Character in Cold Rolled Type 304 Steel Determined by Profile Analysis of X-Ray Diffraction
,”
Acta. Matter
,
59
(
11
), pp.
4314
4322
.
16.
Hayashi
,
S.
, and
Huzimura
,
T.
,
1964
, “
The Effect of Plastic Deformation on the Coercive Force and Initial Permeability of Nickel Single Crystals
,”
Trans. JIM.
,
5
(
2
), pp.
127
131
.
17.
Gokanakonda
,
S.
,
Ghantasala
,
M. K.
, and
Kujawski
,
D.
,
2016
, “
Fatigue Sensor for Structural Health Monitoring: Design, Fabrication and Experimental Testing of a Prototype Sensor
,”
Struct. Control. Health. Monit.
,
23
(
2
), pp.
237
251
.
18.
Karuskevich
,
M. V.
,
Ignatovich
,
S. R
,
Maslak
,
T. P.
,
Menou
,
A.
,
Maruschak
,
P. O.
,
Panin
,
S. V.
, and
Berto
,
F.
,
2016
, “
Multi-Purpose Fatigue Sensor. Part 2. Physical Backgrounds for Damages Accumulation and Parameters of Their Assessment
,”
Frat. Integrita Strutt.
,
10
(
38
), pp.
205
214
.
19.
Wang
,
P.
,
Takagi
,
T.
,
Takeno
,
T.
, and
Miki
,
H.
,
2013
, “
Early Fatigue Damage Detecting Sensors – A Review and Prospects
,”
Sens. Actuator A Phys.
,
198
, pp.
46
60
.
20.
Takahashi
,
S.
,
Hashimoto
,
M.
,
Hirose
,
H.
, and
Sasaki
,
T.
,
2000
, “
Effect of Shot-Peening Process on Fatigue Strength of Austenite Stainless Steel
,”
Transac. JSME Ser. A
,
66
(
646
), pp.
98
103
. in Japanese.
21.
Altenberger
,
I.
,
Scholtes
,
B.
,
Martin
,
U.
, and
Oettel
,
H.
,
1999
, “
Cyclic Deformation and Near Surface Microstructures of Shot Peened or Deep Rolled Austenitic Stainless Steel AISI 304
,”
Mater. Sci. Eng. A
,
264
(
1–2
), pp.
1
16
.
22.
Nakajima
,
M.
,
Akita
,
M.
,
Uematsu
,
Y.
, and
Tokaji
,
Y.
,
2010
, “
Effect of Strain-Induced Martensitic Transformation on Fatigue Behavior of Type 304 Stainless Steel
,”
Procedia. Eng.
,
2
(
1
), pp.
323
330
.
23.
Takahashi
,
R.
,
Murata
,
M.
,
Fuchigami
,
M.
,
Fujikawa
,
T.
, and
Ueda
,
K.
,
2016
,
Time-Series Analysis
,
Ohm-sya
(in Japanese).
You do not currently have access to this content.