Abstract

Stainless steel is used in many applications because of its excellent mechanical properties at elevated temperatures. Material fatigue is a major problem in steel structures and can cause catastrophic damage resulting in significant economic consequences. Conventional nondestructive evaluation techniques can detect macro defects but do not perform well when it comes to material degradation due to fatigue, which happens at a microstructure level. It is well known that stress applied on a material will have an impact on the microstructure and produces a change in the magnetic properties of the material. Hence, magnetic nondestructive evaluation techniques that are sensitive to changes in magnetic properties play a major role in the early-stage fatigue detection, i.e., before the macro crack initiates. This paper introduces the magnetic Barkhausen noise technique to garner information about fatigue state of the material under test. K-medoids clustering algorithm and genetic optimization algorithm are used to classify the stainless-samples into fatigue categories. The results prove that martensitic grade stainless-steel samples in different stages of fatigue can be classified into broad fatigue categories, i.e., low fatigue, mid fatigue, and high fatigue based on the remaining useful life of the sample.

References

1.
Wang
,
H.-p.
,
Dong
,
L.-h.
,
Dong
,
S.-y.
, and
Xu
,
B.-s.
,
2014
, “
Fatigue Damage Evaluation by Metal Magnetic Memory Testing
,”
J. Central South Univ.
,
21
(
1
), pp.
65
70
.
2.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
3.
Wisner
,
B.
,
Mazur
,
K.
, and
Kontsos
,
A.
,
2020
, “
The Use of Nondestructive Evaluation Methods in Fatigue: A Review
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
5
), pp.
859
878
.
4.
Santecchia
,
E.
,
Hamouda
,
A. M. S.
,
Musharavati
,
F.
,
Zalnezhad
,
E.
,
Cabibbo
,
M.
,
El Mehtedi
,
M.
, and
Spigarelli
,
S.
,
2016
, “
A Review on Fatigue Life Prediction Methods for Metals
,”
Adv. Mater. Sci. Eng.
,
2016
.
5.
Lee
,
Y.-L.
,
Barkey
,
M. E.
, and
Kang
,
H.-T.
,
2011
,
Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer-Aided Engineering
,
Elsevier
,
Amsterdam
.
6.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
7.
Cartz
,
L.
,
1995
, “
Nondestructive Testing
,” United States, N.P., web.
8.
Chai
,
M.
,
Zhang
,
J.
,
Zhang
,
Z.
,
Duan
,
Q.
, and
Cheng
,
G.
,
2017
, “
Acoustic Emission Studies for Characterization of Fatigue Crack Growth in 316LN Stainless Steel and Welds
,”
Appl. Acoust.
,
126
, pp.
101
113
.
9.
Carroll
,
J. D.
,
Abuzaid
,
W.
,
Lambros
,
J.
, and
Sehitoglu
,
H.
,
2013
, “
High Resolution Digital Image Correlation Measurements of Strain Accumulation in Fatigue Crack Growth
,”
Int. J. Fatigue
,
57
, pp.
140
150
.
10.
Di Gioacchino
,
F.
, and
Da Fonseca
,
J. Q.
,
2013
, “
Plastic Strain Mapping With Sub-Micron Resolution Using Digital Image Correlation
,”
Exp. Mech.
,
53
(
5
), pp.
743
754
.
11.
Dobroň
,
P.
,
Bohlen
,
J.
,
Chmelík
,
F.
,
Lukáč
,
P.
,
Letzig
,
D.
, and
Kainer
,
K. U.
,
2007
, “
Acoustic Emission During Stress Relaxation of Pure Magnesium and AZ Magnesium Alloys
,”
Mater. Sci. Eng. A
,
462
(
1–2
), pp.
307
310
.
12.
Cuadra
,
J.
,
Vanniamparambil
,
P. A.
,
Hazeli
,
K.
,
Bartoli
,
I.
, and
Kontsos
,
A.
,
2013
, “
Damage Quantification in Polymer Composites Using a Hybrid NDT Approach
,”
Compos. Sci. Technol.
,
83
, pp.
11
21
.
13.
Kontsos
,
A.
,
Loutas
,
T.
,
Kostopoulos
,
V.
,
Hazeli
,
K.
,
Anasori
,
B.
, and
Barsoum
,
M. W.
,
2011
, “
Nanocrystalline Mg–MAX Composites: Mechanical Behavior Characterization Via Acoustic Emission Monitoring
,”
Acta Mater.
,
59
(
14
), pp.
5716
5727
.
14.
Loutas
,
T.
,
Eleftheroglou
,
N.
, and
Zarouchas
,
D.
,
2017
, “
A Data-Driven Probabilistic Framework Towards the In-Situ Prognostics of Fatigue Life of Composites Based on Acoustic Emission Data
,”
Compos. Struct.
,
161
, pp.
522
529
.
15.
Sevostianov
,
I.
,
Zagrai
,
A.
,
Kruse
,
W. A.
, and
Hardee
,
H. C.
,
2010
, “
Connection Between Strength Reduction, Electric Resistance and Electro-Mechanical Impedance in Materials With Fatigue Damage
,”
Int. J. Fract.
,
164
(
1
), pp.
159
166
.
16.
Bodelot
,
L.
,
Charkaluk
,
E.
,
Sabatier
,
L.
, and
Dufrénoy
,
P.
,
2011
, “
Experimental Study of Heterogeneities in Strain and Temperature Fields at the Microstructural Level of Polycrystalline Metals Through Fully-Coupled Full-Field Measurements by Digital Image Correlation and Infrared Thermography
,”
Mech. Mater.
,
43
(
11
), pp.
654
670
.
17.
Piotrowski
,
L.
,
Augustyniak
,
B.
,
Chmielewski
,
M.
, and
Kowalewski
,
Z.
,
2010
, “
Multiparameter Analysis of the Barkhausen Noise Signal and Its Application for the Assessment of Plastic Deformation Level in 13HMF Grade Steel
,”
Meas. Sci. Technol.
,
21
(
11
), p.
115702
.
18.
Sorsa
,
A.
,
Leiviskä
,
K.
,
Santa-aho
,
S.
,
Vippola
,
M.
, and
Lepistö
,
T.
,
2013
, “
An Efficient Procedure for Identifying the Prediction Model Between Residual Stress and Barkhausen Noise
,”
J. Nondestruct. Eval.
,
32
(
4
), pp.
341
349
.
19.
Lindgren
,
M.
, and
Lepisto
,
T.
,
2006
, “
Barkhausen Noise Evaluation of Fatigue in High Strength Steel
,”
Int. J. Mat. Product Technol.
,
26
(
1–2
), pp.
140
151
.
20.
Ranjan
,
R.
,
Jiles
,
D.
, and
Rastogi
,
P.
,
1987
, “
Magnetic Properties of Decarburized Steels: An Investigation of the Effects of Grain Size and Carbon Content
,”
IEEE Trans. Magn.
,
23
(
3
), pp.
1869
1876
.
21.
Perez-Benitez
,
J. A.
,
Capó-Sánchez
,
J.
,
Anglada-Rivera
,
J.
, and
Padovese
,
L.
,
2005
, “
A Model for the Influence of Microstructural Defects on Magnetic Barkhausen Noise in Plain Steels
,”
J. Magn. Magn. Mater.
,
288
, pp.
433
442
.
22.
Zhang
,
S.
,
Shi
,
X.
,
Udpa
,
L.
, and
Deng
,
Y.
,
2018
, “
Micromagnetic Measurement for Characterization of Ferromagnetic Materials’ Microstructural Properties
,”
AIP Adv.
,
8
(
5
), p.
056614
.
23.
Tomita
,
Y.
,
Hashimoto
,
K.
, and
Osawa
,
N.
,
1996
, “
Nondestructive Estimation of Fatigue Damage for Steel by Barkhausen Noise Analysis
,”
NDT&E Int.
,
29
(
5
), pp.
275
280
.
24.
Yuan
,
L.
, and
Longxiu
,
Z.
,
1996
, “
Evaluating the Fatigue Damage of Material by Using Barkhausen Noise Method
,”
Proceedings of the 14th World Conference on Non-Destructive Testing
,
New Delhi, India
,
Dec. 8–13
, Vol.
3
,
Ashgate Publishing Company
.
25.
Furuya
,
Y.
,
Shimada
,
H.
,
Yamada
,
K.
, and
Suzuki
,
T.
,
1996
, “
Estimation of Low Cycle Fatigue Process and Life by the Measurement of Magnetic Barkhausen Noise (in Japanese: English Abstract)
,”
NDT&E Int.
,
5
(
29
), p.
340
.
26.
Lindgren
,
M.
, and
Lepistö
,
T.
,
2001
, “
Effect of Prestraining on Barkhausen Noise Vs. Stress Relation
,”
NDT&E Int.
,
34
(
5
), pp.
337
344
.
27.
Błachnio
,
J.
,
Dutkiewicz
,
J.
, and
Salamon
,
A.
,
2002
, “
The Effect of Cyclic Deformation in a 13% CR Ferritic Steel on Structure and Barkhausen Noise Level
,”
Mater. Sci. Eng. A
,
323
(
1–2
), pp.
83
90
.
28.
Karjalainen
,
L.
, and
Moilanen
,
M.
,
1979
, “
Detection of Plastic Deformation During Fatigue of Mild Steel by the Measurement of Barkhausen Noise
,”
NDT Int.
,
12
(
2
), pp.
51
55
.
29.
Kettunen
,
P.
, and
Ruuskanen
,
P.
,
1979
, “The Influence of Cyclic Stressing on the Barkhausen Effect in Polycrystalline Iron,”
Strength of Metals and Alloys
,
P.
Haasen
, ed.,
Elsevier
,
Amsterdam
, pp.
1163
1168
.
30.
Li
,
Z.
,
Shenoy
,
B. B.
,
Udpa
,
L.
,
Udpa
,
S.
, and
Deng
,
Y.
,
2021
, “
Magnetic Barkhausen Noise Technique for Early-Stage Fatigue Prediction in Martensitic Stainless-Steel Samples
,”
ASME J. Nondestruct. Eval. Diagnost. Prognost. Eng. Syst.
,
4
(
4
), p.
041004
.
31.
Jardeleza
,
D. S.
,
Aliac
,
C. J. G.
, and
Maravillas
,
E. A.
,
2019
, “
Predictive Modeling of Compressive Strength Composition Values for Structural Studies Using K-Medoids Clustering and Quantile Regression Forests
,” 2019
IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)
,
Laoag, Philippines
,
Nov. 29–Dec. 1
,
IEEE
, pp.
1
5
.
32.
Weile
,
D. S.
, and
Michielssen
,
E.
,
1997
, “
Genetic Algorithm Optimization Applied to Electromagnetics: A Review
,”
IEEE Trans. Antennas Propag.
,
45
(
3
), pp.
343
353
.
33.
Jiles
,
D.
,
1988
, “
Review of Magnetic Methods for Nondestructive Evaluation
,”
NDT Int.
,
21
(
5
), pp.
311
319
.
34.
Sipahi
,
L. B.
,
Jiles
,
D. C.
, and
Chandler
,
D.
,
1993
, “
Comprehensive Analysis of Barkhausen Emission Spectra Using Pulse Height Analysis, Frequency Spectrum, and Pulse Wave Form Analysis
,”
J. Appl. Phys.
,
73
(
10
), pp.
5623
5625
.
35.
Shenoy
,
B. B.
,
Li
,
Z.
,
Udpa
,
L.
,
Udpa
,
S.
,
Deng
,
Y.
, and
Seuaciuc-Osorio
,
T.
,
2021
, “
Fatigue Detection and Estimation in Martensitic Stainless-Steel Using Magnetic Nondestructive Evaluation Technique
,”
Quantitative Nondestructive Evaluation
, Vol.
85529
,
American Society of Mechanical Engineers
, Paper No. V001T14A001.
36.
Shenoy
,
B. B.
,
Li
,
Z.
,
Udpa
,
L.
,
Udpa
,
S.
,
Deng
,
Y.
,
Rathod
,
V.
, and
Seuaciuc-Osorio
,
T.
,
2021
, “
Nonlinear Eddy Current Technique for Fatigue Detection and Classification in Martensitic Stainless-Steel Samples
,”
Res. Nondestruct. Eval.
,
32
(
6
), pp.
295
309
.
37.
Wang
,
P.
,
Zhu
,
L.
,
Zhu
,
Q.
,
Ji
,
X.
,
Wang
,
H.
,
Tian
,
G.
, and
Yao
,
E.
,
2013
, “
An Application of Back Propagation Neural Network for the Steel Stress Detection Based on Barkhausen Noise Theory
,”
NDT&E Int.
,
55
, pp.
9
14
.
You do not currently have access to this content.