Abstract

In the study of the remaining useful life (RUL) prediction of neural networks based on deep learning, most of the RUL prediction models use point estimation models. However, due to the influence of the measurement noise and the parameters in the deep learning model, the prediction results will be quite different, which makes the point prediction meaningless. For this reason, this paper proposes a multi-scale convolutional neural network based on approximate Bayesian inference to realize the credibility measurement of bearing RUL prediction results. First, in order to avoid the problem of insufficient single-scale feature representation, parallel multiple dilated convolutions are used to extract multiple features. At the same time, the channel attention mechanism is used to allocate its importance, which can avoid the redundancy of multi-dimensional information. Then, Monte Carlo Dropout can be used to describe the probability characteristics of the results, so as to achieve the measurement of the uncertainty of the RUL prediction results. Finally, the prediction and health management data set is used to verify that the method has less volatility compared with the traditional point estimation prediction results, which provides a more valuable reference for predictive maintenance.

References

1.
Zhang
,
W.
,
Li
,
X.
,
Jia
,
X-D.
,
Ma
,
H.
,
Luo
,
Z.
, and
Li
,
X.
,
2019
, “
Machinery Fault Diagnosis With Imbalanced Data Using Deep Generative Adversarial Networks
,”
Measurement
,
152
, p.
107377
.
2.
Wang
,
R.
,
Shi
,
R.
,
Hu
,
X.
, and
Shen
,
C.
,
2021
, “
Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network With Integrated Dilated Convolution Blocks
,”
Shock Vib.
,
2021
, p.
6616861
.
3.
Rai
,
A.
, and
Upadhyay
,
S. H.
,
2016
, “
A Review on Signal Processing Techniques Utilized in the Fault Diagnosis of Rolling Element Bearings
,”
Tribol. Int.
,
96
, pp.
289
306
.
4.
She
,
D.
, and
Jia
,
M.
,
2020
, “
A BiGRU Method for Remaining Useful Life Prediction of Machinery
,”
Measurement
,
167
, p.
108277
.
5.
Wang
,
B.
,
Lei
,
Y.
,
Li
,
N.
, and
Yan
,
T.
,
2019
, “
Deep Separable Convolutional Network for Remaining Useful Life Prediction of Machinery
,”
Mech. Syst. Signal Process
,
134
, pp.
106330.1
106330.18
.
6.
Yu
,
J.
, and
Zhou
,
X.
,
2020
, “
One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
,
16
(
10
), pp.
6347
6358
.
7.
Wen
,
L.
,
Dong
,
Y.
, and
Gao
,
L.
,
2019
, “
A New Ensemble Residual Convolutional Neural Network for Remaining Useful Life Estimation
,”
Math. Biosci. Eng.
,
16
(
2
), pp.
862
880
.
8.
Ren
,
L.
,
Dong
,
J. B.
,
Wang
,
X. K.
,
Meng
,
Z. H.
,
Zhao
,
L.
, and
Deen
,
M. J.
,
2021
, “
A Data-Driven Auto-CNN LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
,”
IEEE Trans. Ind. Inf.
,
17
(
5
), pp.
3478
3487
.
9.
Cheng
,
C.
,
Ma
,
G.
,
Zhang
,
Y.
,
Sun
,
M.
,
Teng
,
F.
, and
Ding
,
H.
,
2020
, “
A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1243
1254
.
10.
Yoo
,
Y.
, and
Baek
,
J.-G.
,
2018
, “
A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network
,”
Appl. Sci.
,
8
(
7
), p.
1102
.
11.
Li
,
X.
,
Zhang
,
W.
, and
Ding
,
Q.
,
2019
, “
Deep Learning-Based Remaining Useful Life Estimation of Bearings Using Multi-Scale Feature Extraction
,”
Reliab. Eng. Syst. Saf.
,
182
, pp.
208
218
.
12.
Yao
,
D.
,
Li
,
B.
,
Liu
,
H.
,
Yang
,
J.
, and
Jia
,
L.
,
2021
, “
Remaining Useful Life Prediction of Roller Bearings Based on Improved 1d-CNN and Simple Recurrent Unit
,”
Measurement
,
175
, p.
109166
.
13.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2019
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
.
14.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2009
, “
Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
291
296
.
15.
MacKay
,
D. J. C.
,
1996
, “
The Evidence Framework Applied to Classification Networks
,”
Neural Comput.
,
4
(
5
), pp.
720
736
.
16.
Liao
,
Y.
,
Zhang
,
L.
, and
Liu
,
C.
,
2018
, “
Uncertainty Prediction of Remaining Useful Life Using Long Short-Term Memory Network Based on Bootstrap Method
,”
Proceedings of the IEEE International Conference on Prognostics and Health Management
,
Seattle, WA
,
June 11–13
, pp.
1
8
.
17.
Li
,
K.
,
Wang
,
R.
,
Lei
,
H.
,
Zhang
,
T.
,
Liu
,
Y.
, and
Zheng
,
X.
,
2018
, “
"Interval Prediction of Solar Power Using an Improved Bootstrap Method
,”
Sol. Energy
,
159
, pp.
97
112
.
18.
Khosravi
,
A.
,
Nahavandi
,
S.
,
Creighton
,
D.
, and
Atiya
,
A. F.
,
2011
, “
” Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals
,”
IEEE Trans. Neural Networks
,
22
(
3
), pp.
337
346
.
19.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
20.
Saha
,
B.
,
Goebel
,
K.
, and
Christopheresn
,
J.
,
2009
, “
Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
293
308
.
21.
Que
,
Z.
,
Jin
,
X.
, and
Xu
,
Z.
,
2021
, “
Remaining Useful Life Prediction for Bearings Based on a Gated Recurrent Unit
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
11
.
22.
Peng
,
W.
,
Ye
,
Z. S.
, and
Chen
,
N.
,
2019
, “
Bayesian Deep Learning Based Health Prognostics Towards Prognostics Uncertainty
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
1
1
.
23.
Wang
,
B.
,
Lei
,
Y.
,
Yan
,
T.
,
Li
,
N.
, and
Guo
,
L.
,
2020
, “
Recurrent Convolutional Neural Network: A New Framework for Remaining Useful Life Prediction of Machinery
,”
Neurocomputing
,
379
, pp.
117
129
.
24.
LeCun
,
Y.
,
Boser
,
B.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
2014
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.
25.
Yu
,
F.
,
Koltun
,
V.
, and
Funkhouser
,
T.
,
2017
, “
Dilated Residual Networks
,”
30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017)
,
Honolulu, HI
,
July 21–26
.
26.
Xu
,
K.
,
Ba
,
J.
,
Kiros
,
R.
,
Cho
,
K.
,
Courville
,
A.
,
Salakhutdinov
,
R.
,
Zemel
,
R.
, and
Bengio
,
Y.
,
2015
, “
Show, Attend and Tell: Neural Image Caption Generation With Visual Attention
,” Computer Science, pp.
2048
2057
.
27.
Cao
,
R.
,
Fang
,
L.
,
Lu
,
T.
, and
He
,
N.
,
2021
, “
Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification
,”
IEEE Geosci. Remote Sens. Lett.
,
18
(
1
), pp.
43
47
.
28.
Nasef
,
M. M.
,
Sauber
,
A. M.
, and
Nabil
,
M. M.
,
2021
, “
Voice Gender Recognition Under Unconstrained Environments Using Self-Attention
,”
Appl. Acoust.
,
175
(
1
), p.
107823
.
29.
Jiang
,
J. R.
,
Lee
,
J. E.
, and
Zeng
,
Y. M.
,
2020
, “
Time Series Multiple Channel Convolutional Neural Network With Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life
,”
Sensors
,
20
(
1
), p.
166
.
30.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
33rd International Conference on Machine Learning
,
New York, NY
,
June 20–22
, vol. 48, pp.
1050
1059
.
31.
Nectoux
,
P.
,
Gouriveau
,
R.
,
Medjaher
,
K.
,
Ramasso
,
E.
, and
Varnier
,
C.
,
2012
, “
PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests
,”
IEEE International Conference on Prognostics and Health Management
,
Denver, CO
,
June 18
.
32.
Hong
,
S.
,
Zhou
,
Z.
,
Zio
,
E.
, and
Wang
,
W.
,
2014
, “
An Adaptive Method for Health Trend Prediction of Rotating Bearings
,”
Digital Signal Process.
,
35
(
C
), pp.
117
123
.
33.
Huang
,
Z.
,
Xu
,
Z.
,
Ke
,
X.
,
Wang
,
W.
, and
Sun
,
Y.
,
2017
, “
Remaining Useful Life Prediction for an Adaptive Skew-Wiener Process Model
,”
Mech. Syst. Signal Process
,
87
(
A
), pp.
294
306
.
34.
Luo
,
J.
, and
Zhang
,
X.
,
2021
, “
Convolutional Neural Network Based on Attention Mechanism and Bi-LSTM for Bearing Remaining Life Prediction
,”
Appl. Intell.
,
52
(
1
), pp.
1
16
.
You do not currently have access to this content.