Abstract

Model-assisted probability of detection (MAPOD) and sensitivity analysis (SA) are important for quantifying the inspection capability of nondestructive testing (NDT) systems. To improve the computational efficiency, this work proposes the use of polynomial chaos expansions (PCEs), integrated with least-angle regression (LARS), a basis-adaptive technique, and a hyperbolic truncation scheme, in lieu of the direct use of the physics-based measurement model in the MAPOD and SA calculations. The proposed method is demonstrated on three ultrasonic testing cases and compared with Monte Carlo sampling (MCS) of the physics model, MCS-based kriging, and the ordinary least-squares (OLS)-based PCE method. The results show that the probability of detection (POD) metrics of interests can be controlled within 1% accuracy relative to using the physics model directly. Comparison with metamodels shows that the LARS-based PCE method can provide up to an order of magnitude improvement in the computational efficiency.

References

1.
Cawley
,
P.
,
2001
, “
Non-Destructive Testing—Current Capabilities and Future Directions
,”
J. Mater.: Des. Appl.
,
215
(
4
), pp.
213
223
.
2.
Zhu
,
Y.
,
Tian
,
G.
,
Lu
,
R.
, and
Zhang
,
H.
,
2011
, “
A Review of Optical NDT Technologies
,”
Sensors
,
11
(
8
), pp.
7773
7798
. 10.3390/s110807773
3.
Verma
,
S.
,
Bhadauria
,
S.
, and
Akhtar
,
S.
,
2013
, “
Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures
,”
J. Constr. Eng.
,
2013
, pp.
1
11
. 10.1155/2013/834572
4.
Kah
,
P.
,
Mvola
,
B.
,
Martikainen
,
J.
, and
Suoranta
,
R.
,
2014
, “
Real Time Non-Destructive Testing Methods of Welding
,”
Adv. Mater. Res.
,
933
, pp.
109
116
. www.scientific.net/AMR.933
5.
Pazdera
,
L.
,
Topolar
,
L.
,
Smutny
,
J.
, and
Timcakova
,
K.
,
2015
, “
Nondestructive Testing of Advanced Concrete Structure During Lifetime
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
5
. 10.1155/2015/286469
6.
Thompson
,
R. B.
, and
Gray
,
T. A.
,
1983
, “
A Model Relating Ultrasonic Scattering Measurements Through Liquid Solid Interfaces to Unbounded Medium Scattering Amplitudes
,”
J. Acoust. Soc. Am.
,
74
(
4
), pp.
1279
1290
. 10.1121/1.390045
7.
Gao
,
J.
,
Wang
,
K.
, and
Sun
,
J.
,
2013
, “
Study on the Technology of Ultrasonic Imaging Detection Based on Phase Array
,”
Image Process. Pattern Recognit.
,
6
(
6
), pp.
71
78
.
8.
Mares
,
P.
,
2014
, “
Simulation as a Support for Ultrasonic Testing
,”
J. Mod. Phys.
,
5
(
13
), pp.
1167
1172
. 10.4236/jmp.2014.513118
9.
Liu
,
F.
,
Xu
,
C.
,
He
,
Y.
,
Xiao
,
D.
,
Meng
,
F.
,
Xiao
,
Z.
, and
Pan
,
Q.
,
2015
, “
Research on the Ultrasonic Test System for the Complex Curved Surface Based on Robot
,”
2015 IEEE Far East NDT New Technology and Application Forum (FENDT)
,
Zhuhai, Guangdong Province, China
,
May 28–31
, pp.
173
176
. 10.1109/fendt.2015.7398334
10.
Yan
,
X.-L.
,
Dong
,
S.-Y.
,
Xu
,
B.-S.
, and
Gao
,
Y.
,
2018
, “
Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating
,”
Materials
,
11
(
2
), pp.
1
16
. 10.20944/preprints201801.0071.v1
11.
Silva
,
C. M.
,
Rosa
,
P. A.
,
Atkins
,
A. G.
, and
Martins
,
P. A.
,
2014
, “
An Electromagnetic Testing Machine for Determining Fracture Toughness Under Different Loading Rate and Superimposed Pressure
,”
J. Strain Anal.
,
49
(
6
), pp.
437
444
. 10.1177/0309324713519441
12.
Gao
,
P.
,
Wang
,
C.
,
Li
,
Y.
, and
Cong
,
Z.
,
2015
, “
Electromagnetic and Eddy Current NDT in Weld Inspection: A Review
,”
Insight: Non-Destr. Test. Cond. Monit.
,
57
(
6
), pp.
337
345
. 10.1784/insi.2015.57.6.337
13.
Liu
,
S.
,
Sun
,
Y.
,
Gu
,
M.
,
Liu
,
C.
,
He
,
L.
, and
Kang
,
Y.
,
2017
, “
Review and Analysis of Three Representative Electromagnetic NDT Methods
,”
Insight: Non-Destr. Test. Cond. Monit.
,
59
(
4
), pp.
176
183
. 10.1784/insi.2017.59.4.176
14.
Cai
,
Z.
,
Cheng
,
H.
, and
Liu
,
C.
,
2018
, “
Nonlinear Electromagnetic Acoustic Testing Method for Tensile Damage Evaluation
,”
J. Sens.
,
2018
, pp.
1
11
. 10.1155/2018/1745257
15.
Choi
,
S.-N.
,
Hong
,
S.-Y.
, and
Hwang
,
W.-G.
,
2012
, “
Performance Demonstration for an Automated Ultrasonic Testing System for Piping Welds
,”
J. Nucl. Sci. Technol.
,
49
(
5
), pp.
562
570
. 10.1080/00223131.2012.676821
16.
Martin
,
O.
,
Pereda
,
M.
,
Santos
,
J.
, and
Galan
,
J.
,
2014
, “
Assessment of Resistance Spot Welding Quality Based on Ultrasonic Testing and Tree-Based Techniques
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2478
2487
. 10.1016/j.jmatprotec.2014.05.021
17.
Manjula
,
K.
,
Vijayarekha
,
K.
, and
Venkatraman
,
B.
,
2014
, “
Weld Flaw Detection Using Various Ultrasonic Techniques: A Review
,”
J. Appl. Sci.
,
14
(
14
), pp.
1529
1535
. 10.3923/jas.2014.1529.1535
18.
Adamus
,
K.
, and
Lacki
,
P.
,
2017
, “
Assessment of Aluminum FSW Joints Using Ultrasonic Testing
,”
Arch. Metall. Mater.
,
62
(
4
), pp.
2399
2404
. 10.1515/amm-2017-0353
19.
Poudel
,
A.
,
Strycek
,
J.
, and
Chu
,
T. P.
,
2013
, “
Air-Coupled Ultrasonic Testing of Carbon–Carbon Composite Aircraft Brake Disks
,”
Mater. Eval.
,
71
(
8
), pp.
987
994
.
20.
Masserey
,
B.
,
Raemy
,
C.
, and
Fromme
,
P.
,
2014
, “
High-Frequency Guided Ultrasonic Waves for Hidden Defect Detect in Multi-Layered Aircraft Structures
,”
Ultrasonics
,
54
(
7
), pp.
1720
1728
. 10.1016/j.ultras.2014.04.023
21.
Carpriotti
,
M.
,
Kim
,
H.
,
Scalea
,
F.
, and
Kim
,
H.
,
2017
, “
Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing
,”
Materials
,
10
(
6
), pp.
1
12
. 10.3390/ma10060616
22.
Boopathy
,
G.
,
Surrendar
,
G.
, and
Nema
,
A.
,
2017
, “
Review on Non-Destructive Testing of Composite Materials in Aircraft Applications
,”
Int. J. Mech. Eng. Technol.
,
8
(
8
), pp.
1334
1342
.
23.
Wang
,
X.
,
Tse
,
P. W.
,
Mechefske
,
C. K.
, and
Hua
,
M.
,
2010
, “
Experimental Investigation of Reflection in Guided Wave-Based Inspection for the Characterization of Pipeline Defects
,”
NDT/E Int.
,
43
(
4
), pp.
365
374
. 10.1016/j.ndteint.2010.01.002
24.
Sudheera
,
K.
, and
Nandhitha
,
N. M.
,
2015
, “
Application of Hilbert Transform for Flaw Characterization in Ultrasonic Signals
,”
Indian J. Sci. Technol.
,
8
(
13
), pp.
1
6
. 10.17485/ijst/2015/v8i13/56303
25.
Ahmed
,
A.
,
Badarinarayan
,
K. S.
,
Noor Ahmed
,
R.
, and
Gajendra
,
G.
,
2015
, “
Development of Ultrasonic Reference Standards for Defect Characterization in Carbon Fiber Composites
,”
Int. Res. J. Eng. Technol.
,
2
(
7
), pp.
840
844
.
26.
Bai
,
L.
,
Velichko
,
A.
, and
Drinkwater
,
B. W.
,
2018
, “
Ultrasonic Defect Characterization—Use of Amplitude, Phase and Frequency Information
,”
J. Acoust. Soc. Am.
,
143
(
1
), pp.
349
360
. 10.1121/1.5021246
27.
MIL-HDBK-1823
,
1999
, “
Nondestructive Evaluation System Reliability Assessment
,”
Department of Defense Handbook
,
Wright-Patterson AFB, USA
.
28.
Berens
,
A. P.
,
Hoppe
,
W.
,
Stubbs
,
D. A.
, and
Scott
,
O.
,
2001
, “
Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System Development
,”
Mater. Correl. Study
,
3
, pp.
1
32
.
29.
Georgiou
,
G. A.
,
2006
, “
Probability of Detection (PoD) Curves. Derivation, Application and Limitations
,” Research Report 454,
Jacobi Consulting Ltd.
30.
Kurz
,
J. H.
,
Dugan
,
S.
, and
Jungert
,
A.
,
2013
, “
Reliability Considerations of NDT by Probability of Detection (POD) Determination Using Ultrasound Phased Array—Results From a Project in Frame of the German Nuclear Safety Research Program
,”
5th European-American Workshop on Reliability of NDE, No. 16
,
Berlin, Germany
,
Oct. 7–10
, pp.
1
11
.
31.
MIL-HDBK-1823A
,
2009
, “
Nondestructive Evaluation System Reliability Assessment
,”
Department of Defense Handbook
,
Wright-Patterson AFB, USA
.
32.
Annis
,
C.
,
2010
,
Statistical Best-Practices for Building Probability of Detection (POD) Models
, R Package MH1823, Version 2.5,
Luxembourg, Germany
, http://www.statisticalengineering.com/mh1823/mh1823-algorithms.html.
33.
Lilburne
,
L.
, and
Tarantola
,
S.
,
2009
, “
Sensitivity Analysis of Spatial Models
,”
Int. J. Geogr. Inf. Sci.
,
23
(
2
), pp.
151
168
. 10.1080/13658810802094995
34.
Charzynska
,
A.
,
Natecz
,
A.
,
Rybinski
,
M.
, and
Gambin
,
A.
,
2012
, “
Sensitivity Analysis of Mathematical Models of Signaling Pathways
,”
J. Biotechnol. Comput. Biol. Bionanotechnol.
,
93
(
3
), pp.
291
308
. 10.5114/bta.2012.46584
35.
Staelen
,
R. H. D.
, and
Beddek
,
K.
,
2015
, “
Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem
,”
Int. J. Comput. Math.
,
92
(
9
), pp.
1874
1882
. 10.1080/00207160.2014.889820
36.
Ferretti
,
F.
,
Saltelli
,
A.
, and
Tarantola
,
S.
,
2016
, “
Trends in Sensitivity Analysis Practice in the Last Decades
,”
Sci. Total Environ.
,
568
(
15
), pp.
666
670
. 10.1016/j.scitotenv.2016.02.133
37.
Borgonovo
,
E.
, and
Plischke
,
E.
,
2016
, “
Sensitivity Analysis: A Review of Recent Advances
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
869
887
. 10.1016/j.ejor.2015.06.032
38.
Castillos
,
E.
,
Conejo
,
A.
,
Minguez
,
R.
, and
Castillo
,
C.
,
2007
, “
A Closed Formula for Local Sensitivity Analysis in Mathematical Programming
,”
Eng. Optim.
,
38
(
1
), pp.
93
112
. 10.1080/03052150500229418
39.
Sher
,
A.
,
Wang
,
K.
,
Wathen
,
A.
,
Maybank
,
P.
,
Mirams
,
G.
,
Abramson
,
D.
,
Noble
,
D.
, and
Gavaghan
,
D.
,
2011
, “
A Local Sensitivity Analysis Method for Developing Biological Models With Identifiable Parameters: Application to Cardiac Ionic Channel Modelling
,”
Future Gener. Comput. Syst.
,
29
(
2
), pp.
591
598
. 10.1016/j.future.2011.09.006
40.
Iooss
,
B.
, and
Saltelli
,
A.
,
2015
,
Introduction to Sensitivity Analysis
,
Springer International Publishing
,
Switzerland
.
41.
Zhou
,
X.
, and
Lin
,
H.
,
2017
, “Local Sensitivity Analysis,”
Encyclopedia of GIS
,
John Wiley and Sons, Inc.
,
New York, NY
, pp.
1116
1119
.
42.
Sobol’
,
I.
, and
Kuchereko
,
S.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.
43.
Sobol’
,
I.
,
1994
,
A Primer for the Monte Carlo Method
,
CRC Press
,
Boca Raton, FL
.
44.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
. 10.1016/0951-8320(96)00002-6
45.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluation to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp.
280
297
. 10.1016/S0010-4655(02)00280-1
46.
Hall
,
J. W.
,
2006
, “
Uncertainty-Based Sensitivity Indices for Imprecise Probability Distribution
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1443
1451
. 10.1016/j.ress.2005.11.042
47.
Morio
,
J.
,
2011
, “
Global and Local Sensitivity Analysis Methods for a Physical System
,”
Eur. J. Phys.
,
32
(
6
), pp.
1
9
.
48.
Sobol’
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
. 10.1016/S0378-4754(00)00270-6
49.
Owen
,
A. B.
,
2014
, “
Sobol’ Indices and Shapley Value
,”
SIAM/ASA J. Uncertain. Quantif.
,
2
(
1
), pp.
245
251
. 10.1137/130936233
50.
Chastaing
,
G.
,
Prieur
,
C.
, and
Gamboa
,
F.
,
2015
, “
Generalized Sobol Sensitivity Analysis Indices for Dependent Variables: Numerical Methods
,”
J. Stat. Comput. Simul.
,
85
(
7
), pp.
1306
1333
. 10.1080/00949655.2014.960415
51.
Aldrin
,
J. C.
,
2002
, “
Overview of Mathematical Modeling in Nondestructive Evaluation (NDE)
,”
Austin
,
Incorporated, Texas Research Institute.
52.
Ginzel
,
E.
,
2007
, “
NDT Modelling An Overview
,” Technical Report.
53.
Darmon
,
M.
,
Chatillon
,
S.
,
Mahaut
,
S.
,
Calmon
,
P.
,
Fradkin
,
L.
, and
Zernov
,
V.
,
2011
, “
Recent Advances in Semi-Analytical Scattering Models for NDT Simulation
,”
J. Phys.
,
269
(
1
), pp.
1
12
. 10.1088/1742-6596/269/1/012013
54.
Yu
,
Y.
,
Li
,
X.
,
Simm
,
A.
, and
Tian
,
G.
,
2011
, “
Theoretical Model-Based Quantitative Optimization of Numerical Modeling for Eddy Current NDT
,”
Nondestr. Test. Eval.
,
26
(
2
), pp.
129
140
. 10.1080/10589759.2010.521827
55.
Kolkoori
,
S.
,
2014
, “
Quantitative Evaluation of Ultrasonic Wave Propagation in Inhomogeneous Anisotropic Austenitic Welds Using 3D Ray Tracing Method: Numerical and Experimental Validation
,” Doctorate dissertation,
Technical University of Berlin
,
Berlin, Germany
.
56.
Fellinger
,
P.
,
Marklein
,
R.
,
Langenberg
,
K. J.
, and
Klaholz
,
S.
,
1995
, “
Numerical Modeling of Elastic Wave Propagation and Scattering With EFIT—Elastodynamic Finite Integration Technique
,”
Wave Motion
,
21
(
1
), pp.
47
66
. 10.1016/0165-2125(94)00040-C
57.
Langenberg
,
K. J.
,
Hannemann
,
R.
,
Kaczorowski
,
T.
,
Marklein
,
R.
,
Koehler
,
B.
,
Schurig
,
C.
, and
Walte
,
F.
,
2000
, “
Application of Modeling Techniques for Ultrasonic Austenitic Weld Inspection
,”
NDT/E Int.
,
33
(
7
), pp.
465
480
. 10.1016/S0963-8695(00)00018-9
58.
Langenberg
,
K. J.
, and
Marklein
,
R.
,
2005
, “
A Transient Elastic Waves Applied to Nondestructive Testing of Transversely Isotropic Lossless Materials: A Coordinate Free Approach
,”
Wave Motion
,
41
(
3
), pp.
247
261
. 10.1016/j.wavemoti.2004.05.007
59.
Harumi
,
K.
, and
Uchida
,
M.
,
1990
, “
Computer Simulation of Ultrasonic and Its Applications
,”
J. Nondestr. Eval.
,
9
(
2–3
), pp.
81
99
. 10.1007/BF00566386
60.
Wagner
,
D.
,
Cavalieri
,
F. J.
,
Bathias
,
C.
, and
Ranc
,
N.
,
2012
, “
Ultrasonic Fatigue Tests at High Temperature on an Austenitic Steel
,”
Propul. Power Res.
,
1
(
1
), pp.
29
35
. 10.1016/j.jppr.2012.10.008
61.
Subair
,
S.
,
Balasubramaniam
,
K.
,
Rajagopal
,
P.
,
Kumar
,
A.
,
Rao
,
B. P.
, and
Jayakumar
,
T.
,
2014
, “
Finite Element Simulations to Predict Probability of Detection (PoD) Curves for Ultrasonic Inspection of Nuclear Components
,”
Procedia Eng.
,
86
, pp.
461
468
. 10.1016/j.proeng.2014.11.059
62.
Temple
,
J. A. G.
,
1988
, “
Modeling the Propagation and Scattering of Elastic Waves in Inhomogeneous Anisotropic Media
,”
J. Phys. D: Appl. Phys.
,
21
(
6
), pp.
859
874
. 10.1088/0022-3727/21/6/003
63.
Baek
,
E.
, and
Yim
,
H.
,
2011
, “
Numerical Modeling and Simulation for Ultrasonic Inspection of Anisotropic Austenitic Welds Using the Mass Spring Lattice Model
,”
NDT/E Int.
,
44
(
7
), pp.
571
582
. 10.1016/j.ndteint.2011.05.011
64.
Saez
,
A.
, and
Dominguez
,
J.
,
1999
, “
BEM Analysis of Wave Scattering in Transversely Isotropic Solids
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1283
1300
. 10.1002/(ISSN)1097-0207
65.
Zhang
,
C.
, and
Gross
,
D.
,
2002
, “
A 2D Hyper Singular Time-Domain Traction BEM for Transient Elastodynamic Crack Analysis
,”
Wave Motion
,
35
(
1
), pp.
17
40
. 10.1016/S0165-2125(01)00081-6
66.
Westlund
,
J.
,
2011
, “
On the Propagation of Ultrasonic Testing Using Boundary Integral Equation Methods
,” Ph.D. thesis,
Charles University of Technology
,
Gothenburg
.
67.
Spies
,
M.
,
2007
, “
Ultrasonic Field Modeling for Immersed Components Using Gaussian Beam Superposition
,”
Ultrasonics
,
46
(
2
), pp.
138
147
. 10.1016/j.ultras.2007.01.004
68.
Jeong
,
H.
, and
Schmerr
,
L. W.
,
2007
, “
Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi Gaussian Beams
,”
J. Mech. Sci. Technol.
,
21
(
8
), pp.
1184
1190
. 10.1007/BF03179034
69.
Ye
,
J.
,
Kim
,
H. J.
,
Song
,
S. J.
,
Kang
,
S. S.
,
Kim
,
K.
, and
Song
,
M. H.
,
2011
, “
Model Based Simulation of Focused Beam Fields Produced by a Phased Array Ultrasonic Transducer in Dissimilar Meta Welds
,”
NDT/E Int.
,
44
(
3
), pp.
290
296
. 10.1016/j.ndteint.2011.01.003
70.
Nam
,
Y.-H.
,
2001
, “
Modeling of Ultrasonic Testing in Butt Joint by Ray Tracing
,”
J. Mech. Sci. Technol.
,
15
(
4
), pp.
441
447
. 10.1007/bf03185104
71.
Liu
,
Q.
,
Persson
,
G.
, and
Wirdelius
,
H.
,
2014
, “
A Receiver Model for Ultrasonic Ray Tracing in an Inhomogeneous Anisotropic Weld
,”
J. Mod. Phys.
,
5
(
13
), pp.
1186
1201
. 10.4236/jmp.2014.513120
72.
Zeng
,
Z.
,
Udpa
,
L.
, and
Udpa
,
S. S.
,
2009
, “
Finite-Element Model for Simulation of Ferrite-Core Eddy-Current Probe
,”
IEEE Trans. Magn.
,
46
(
3
), pp.
905
909
.
73.
Bennoud
,
S.
, and
Zergoug
,
M.
,
2014
, “
Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
,”
Int. J. Aerosp. Mech. Eng.
,
8
(
4
), pp.
754
757
.
74.
Aoukili
,
A.
, and
Khamlichi
,
A.
,
2016
, “
Modeling an Eddy-Current Probe for Damage Detection of Surface Cracks in Metallic Parts
,”
Procedia Technol.
,
22
, pp.
527
534
. 10.1016/j.protcy.2016.01.112
75.
Inanc
,
F.
, and
Gray
,
J. N.
,
1997
, “
Scattering Simulations in Radiography
,”
Appl. Radiat. Isot.
,
48
(
10–12
), pp.
1299
1305
. 10.1016/S0969-8043(97)00122-X
76.
Gray
,
J. N.
,
Gray
,
T. A.
,
Nakagawa
,
N.
, and
Thompson
,
R. B.
,
1989
, “Nondestructive Evaluation and Quality Control,”
Metal Handbooks
, Vol.
17
,
ASM International
,
Materials Park, OH
, pp.
702
715
.
77.
Xu
,
J.
,
Wallingford
,
R. M.
,
Jensen
,
T.
, and
Gray
,
J. N.
,
1994
, “
Recent Developments in the X-ray Radiography Simulation Code: XRSIM
,”
Rev. Prog. Quant. Nondestr. Eval.
,
13
, pp.
557
557
.
78.
Smith
,
K.
,
Thompson
,
B.
,
Meeker
,
B.
,
Gray
,
T.
, and
Brasche
,
L.
,
2007
, “
Model-Assisted Probability of Detection Validation for Immersion Ultrasonic Application
,”
Rev. Prog. Quant. Nondestr. Eval.
,
26A/26B
(
1
), pp.
1816
1822
. 10.1063/1.2718184
79.
Thompson
,
R.
,
Brasche
,
L.
,
Forsyth
,
D.
,
Lindgren
,
E.
, and
Swindell
,
P.
,
2009
, “
Recent Advances in Model-Assisted Probability of Detection
,”
4th European-American Workshop on Reliability of NDE
,
Berlin, Germany
,
June
.
80.
Aldrin
,
J.
,
Medina
,
E.
,
Lindgren
,
E.
,
Buynak
,
C.
, and
Knopp
,
J.
,
2011
, “
Protocol for Reliability Assessment of Structural Health Monitoring Systems Incorporating Model-Assisted Probability of Detection (MAPOD) Approach
,”
Proceedings of the 8th International Workshop on SHM
,
Stanford, CA
,
Sept. 13–15
, pp.
2452
2459
. 10.1063/1.4716398
81.
Aldrin
,
J.
,
Medina
,
E.
,
Lindgren
,
J. S. E.
,
Buynak
,
C.
, and
Knopp
,
J.
,
2012
, “
Demonstration Study for Reliability Assessment of SHM Systems Incorporating Model-Assisted Probability of Detection Approach
,”
Rev. Prog. Quant. Nondestr. Eval.
,
1430
(
1
), pp.
1543
1550
. 10.1063/1.4716398
82.
Aldrin
,
J.
,
Knopp
,
J.
,
Lindgren
,
E.
, and
Jata
,
K.
,
2009
, “
Model-Assisted Probability of Detection Evaluation for Eddy Current Inspection of Fastener Sites
,”
Rev. Prog. Quant. Nondestr. Eval.
,
28
(
1
), pp.
1784
1791
. 10.1063/1.3114175
83.
Aldrin
,
J.
,
Medina
,
E.
,
Lindgren
,
E.
,
Buynak
,
C.
,
Steffes
,
G.
, and
Derriso
,
M.
,
2010
, “
Model-Assisted Probabilistic Reliability Assessment for Structural Health Monitoring Systems
,”
Rev. Prog. Quant. Nondestr. Eval.
,
29
(
1
), pp.
1965
1972
. 10.1063/1.3362348
84.
Aldrin
,
J.
,
Medina
,
E.
,
Lindgren
,
E.
,
Buynak
,
C.
, and
Knopp
,
J.
,
2011
, “
Case Studies for Model-Assisted Probabilistic Reliability Assessment for Structural Health Monitoring Systems
,”
Rev. Prog. Quant. Nondestr. Eval.
,
30
(
1
), pp.
1589
1596
. 10.1063/1.3592119
85.
Guratzsch
,
R.
, and
Mahadevan
,
S.
,
2010
, “
Structural Health Monitoring Sensor Placement Optimization Under Uncertainty
,”
AIAA J.
,
48
(
7
), pp.
1281
1289
. 10.2514/1.28435
86.
Koziel
,
S.
, and
Leifsson
,
L.
,
2016
, “Simulation-Driven Design by Knowledge-Based Response Correction Techniques,”
Simulation-Driven Design by Knowledge-Based Response Correction Techniques
.
Springer
, pp.
31
60
. 10.1007/978-3-319-30115-0_5
87.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
, “Engineering Design via Surrogate Modelling: A Practical Guide,”
Engineering Design via Surrogate Modelling: A Practical Guide
.
John Wiley and Sons, Ltd.
, pp.
33
76
. 10.2514/4.479557
88.
Browne
,
T.
,
Gratiet
,
L.
,
Blatman
,
G.
,
Cordeiro
,
S.
,
Goursaud
,
B.
,
Iooss
,
B.
, and
Marice
,
L.
,
2015
, “
Building Probability of Detection Curves via Metamodels
,”
12th International Conference on Application of Statistics and Probability in Civil Engineering
,
Vancouver, Canada
,
July 12–15
, pp. 1–6. 10.1007/s10921-016-0387-z
89.
Ribay
,
G.
,
Artusi
,
X.
,
Jenson
,
F.
,
Reece
,
C.
, and
Lhuillier
,
P.
,
2016
, “
Model-Based POD Study of Manual Ultrasound Inspection and Sensitivity Analysis Using Metamodel
,”
42nd Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 6th European-American Workshop on Reliability of NDE, No. 1706
, p.
200006
. 10.1063/1.4940650
90.
Rodat
,
D.
,
Guibert
,
F.
,
Dominguez
,
N.
, and
Calmon
,
P.
,
2017
, “
Operational NDT Simulator, Towards Human Factors Integration in Simulated Probability of Detection
,”
43rd Annu. Rev. Prog. Quant. Nondestr. Eval.
,
36
(
1
), p.
140004
. 10.1063/1.4974719
91.
Iooss
,
B.
, and
Gratiet
,
L.
,
2017
, “
Uncertainty and Sensitivity Analysis of Functional Risk Curves Based on Gaussian Processes
,”
Reliab. Eng. Syst. Saf.
,
6
(
18
), pp.
1
9
.
92.
Wei
,
P.
,
Liu
,
F.
, and
Tang
,
C.
,
2018
, “
Reliability and Reliability-Based Importance Analysis of Structural Systems Using Multiple Response Gaussian Process Model
,”
Reliab. Eng. Syst. Saf.
,
175
, pp.
183
195
. 10.1016/j.ress.2018.03.013
93.
Kleijnen
,
J. P. C.
,
2007
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.
94.
Martin
,
J. D.
,
2009
, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Des.
,
131
(
8
), p.
084501
. 10.1115/1.3151807
95.
Bilicz
,
S.
,
Vazquez
,
E.
,
Gyimothy
,
S.
,
Pavo
,
J.
, and
Lambert
,
M.
,
2010
, “
Kriging for Eddy-Current Testing Problems
,”
IEEE. Trans. Magn.
,
46
(
8
), pp.
4582
4590
. 10.1109/tmag.2010.2043418
96.
Lee
,
S.
, and
Kim
,
J. H.
,
2017
, “
An Adaptive Importance Sampling Method With a Kriging Metamodel to Calculate Failure Probability
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5769
5778
. 10.1007/s12206-017-1119-8
97.
Hussain
,
M. F.
,
Barton
,
R. R.
, and
Joshi
,
S.
,
2002
, “
Metamodeling: Radial Basis Functions, Versus Polynomials
,”
Eur. J. Oper. Res.
,
138
(
1
), pp.
142
154
. 10.1016/S0377-2217(01)00076-5
98.
Mullur
,
A. A.
, and
Messac
,
A.
,
2005
, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling
,”
AIAA J.
,
43
(
6
), pp.
1306
1315
. 10.2514/1.11292
99.
Kim
,
B.
,
Lee
,
Y.
, and
Choi
,
D.
,
2009
, “
Comparison Study on the Accuracy of Metamodeling Technique for Non-Convex Functions
,”
J. Mech. Sci. Technol.
,
23
(
4
), pp.
1175
1181
. 10.1007/s12206-008-1201-3
100.
Wu
,
Z.
,
Wang
,
D.
, and
Zhang
,
W.
,
2016
, “
Global Sensitivity Analysis Using a Gaussian Radial Basis Function Metamodel
,”
Reliab. Eng. Syst. Saf.
,
154
, pp.
171
179
. 10.1016/j.ress.2016.06.006
101.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
. 10.2307/2371268
102.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
. 10.1137/S1064827501387826
103.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
. 10.1016/j.probengmech.2009.10.003
104.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
. 10.1016/j.jcp.2010.12.021
105.
Li
,
D.
,
Wilson
,
P. A.
, and
Jiong
,
Z.
,
2015
, “
An Improved Support Vector Regression and Its Modelling of Manoeuvring Performance in Multidisciplinary Ship Design Optimization
,”
Int. J. Modell. Simul.
,
35
(
3–4
), pp.
122
128
. 10.1080/02286203.2015.1111055
106.
Ju
,
Y.
,
Parks
,
G.
, and
Zhang
,
C.
,
2017
, “
A Bisection-Sampling-Based Support Vector Regression-High-Dimensional Model Representation Metamodeling Technique for High-Dimensional Problems
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
12
), pp.
2173
2186
. 10.1177/0954406216629504
107.
Amouzgar
,
K.
,
Bandaru
,
S.
, and
Ng
,
A. H. C.
,
2018
, “
Radial Basis Functions With a Priori Bias as Surrogate Models: A Comparative Study
,”
Eng. Appl. Artif. Intell.
,
71
, pp.
28
44
. 10.1016/j.engappai.2018.02.006
108.
Moustapha
,
M.
,
Bourinet
,
J.-M.
,
Guillaume
,
B.
, and
Sudret
,
B.
,
2018
, “
Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng.
,
4
(
2
), p.
04018005
10.1061/ajrua6.0000950
109.
Bilicz
,
S.
,
Lambert
,
M.
, and
Gyimothy
,
S.
,
2010
, “
Kriging-Based Generation of Optimal Databases as Forward and Inverse Surrogate Models
,”
Inverse Probl.
,
26
(
7
), pp.
1
15
. 10.1088/0266-5611/26/7/074012
110.
Bilicz
,
S.
,
Lambert
,
M.
,
Gyimothy
,
S.
, and
Pavo
,
J.
,
2012
, “
Solution of Inverse Problems in Nondestructive Testing by a Kriging-Based Surrogate Model
,”
IEEE Trans. Magn.
,
48
(
2
), pp.
495
498
. 10.1109/TMAG.2011.2172196
111.
Miorelli
,
R.
,
Artusi
,
X.
,
Abdessalem
,
A.
, and
Reboud
,
C.
,
2016
, “
Database Generation and Exploitation for Efficient and Intensive Simulation Studies
,”
42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, No. 1706
, p.
180002
. 10.1063/1.4940632
112.
Knopp
,
J.
,
Blodgett
,
M.
, and
Aldrin
,
J.
,
2011
, “
Efficient Propagation of Uncertainty Simulations Via the Probabilistic Collocation Method
,”
Studies in Applied Electromagnetics and Mechanics; Electromagnetic Nondestructive Evaluation Proceedings
,
Chennai, India
,
Mar. 10–12
, Vol.
35
.
113.
Efron
,
B.
,
Hatie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
. 10.1214/009053604000000067
114.
Blatman
,
G.
,
2009
, “
Adaptive Sparse Polynomial Chaos Expansion for Uncertainty Propagation and Sensitivity Analysis
,” Ph.D. thesis,
Blaise Pascal University
,
Clermont, FL
, II. 3, 8, 9.
115.
Gurrala
,
P.
,
Chen
,
K.
,
Song
,
J.
, and
Robert
,
R.
,
2017
, “
Full Wave Modeling of Ultrasonic NDE Benchmark Problems Using Nystrom Method
,”
43rd Annual Review of Progress in Quantitative Nondestructive Evaluation
,
Atlanta, GA
,
July 17–22, 2016
, Vol.
36
, p.
150003
.
116.
Stigler
,
S. M.
,
2006
, “
The Epic Story of Maximum Likelihood
,”
Stat. Sci.
,
22
(
4
), pp.
592
620
.
117.
Schobi
,
R.
, and
Sudret
,
B.
,
2016
, “
PCE-Based Sobol’ Indices for Probability-Boxes
,”
8th International Conference : Sensitivity Analysis of Model Output: Celebrating the 90th Birthday of Ilya M. Sobol
’,
University of ReunionIsland, Le Tampon, Reunion
,
Nov. 30–Dec. 3
, pp.
83
84
.
118.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis
,
The Primer, John Wiley & Sons
,
New York
119.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model
,”
Comput. Phys. Commun.
,
181
(
2
), pp.
259
270
. 10.1016/j.cpc.2009.09.018
120.
Palisade Corporation
,
2004
, “
Risk Analysis and Simulation Add-In for Microsoft Excel, Version 4.5
”.
Palisade Corporation
,
Ithaca, NY
, pp.
1
515
.
121.
Chu
,
L.
,
Cursi
,
E. S.
,
Hami
,
A.
, and
Eid
,
M.
,
2015
, “
Application of Latin Hypercube Sampling Based Kriging Surrogate Models in Reliability Assessment
,”
Sci. J. Appl. Math. Stat.
,
3
(
6
), pp.
263
274
. 10.11648/j.sjams.20150306.16
122.
Schmerr
,
L. W.
,
Kim
,
H. J.
,
Lopez
,
A. L.
, and
Sedov
,
A.
,
2005
, “
Simulating the Experiments of the 2004 Ultrasonic Benchmark Study
,”
Rev. Prog. Quant. Nondestr. Eval.
,
24
(
1
), pp.
1880
1887
. 10.1063/1.1916899
123.
Song
,
J.
,
Park
,
J. S.
,
Choi
,
Y. H.
,
Kang
,
S. C.
, and
Kim
,
K. J.
,
2005
, “
Model Predictions to the 2004 Ultrasonic Benchmark Problems
,”
Rev. Prog. Quant. Nondestr. Eval.
,
24
(
7
), pp.
1872
1879
. 10.1063/1.1916898
124.
Schmerr
,
L. W.
, and
Song
,
J.
,
2007
,
Ultrasonic Nondestructive Evaluation Systems
,
Springer
,
Berlin
.
125.
Wen
,
J. J.
, and
Breazeale
,
M. A.
,
1988
, “
A Diffraction Beam Field Expressed as the Superposition of Gaussian Beams
,”
J. Acoust. Soc. Am.
,
83
(
5
), pp.
1752
1756
. 10.1121/1.396508
126.
Wen
,
J. J.
, and
Breazeale
,
M. A.
,
1990
, “
Computer Optimization of the Gaussian Beam Description of an Ultrasonic Field
,”
Computational Acoustics: Scattering, Gaussian Beams, and Aeroacoustic
, Vol.
2
, pp.
181
196
.
127.
Schmerr
,
L.
,
2013
,
Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach
,
Springer Science & Business Media
,
Berlin
.
128.
Thompson
,
R. B.
, and
Gray
,
T. A.
,
1983
, “Analytic Diffraction Corrections to Ultrasonic Scattering Measurements,”
Library of Congress Cataloging in Publication Data
, Vol.
2A
,
Springer
,
New York
.
129.
Ryu
,
J.
,
Kim
,
K.
,
Lee
,
T.
, and
Choi
,
D.
,
2002
, “
Kriging Interpolation Methods in Geostatistics and DACE Model
,”
Korean Soc. Mech. Eng. Int. J.
,
16
(
5
), pp.
619
632
.
130.
Sacks
,
J.
,
Welch
,
W.
,
Michell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
. 10.1214/ss/1177012413
131.
Lataniotis
,
C.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2017
, “
Kriging (Gaussian Process Modelling)
,” UQLab User Manual.
132.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
New York
.
133.
Udell
,
M.
,
Horn
,
C.
,
Zadeh
,
R.
, and
Boyd
,
S.
,
2016
, “
Generalized Low Rank Models, Generalized Low Rank Models
,”
Found. Trends Mach. Learn.
,
9
(
4
), pp.
1
118
. 10.1561/2200000055
134.
Baker
,
A.
,
2016
, “Simplicity,”
The Stanford Encyclopedia of Philosophy
,
E. N.
Zalta
, ed., winter 2016 ed.,
Metaphysics Research Lab, Stanford University.
You do not currently have access to this content.