Abstract

The versatile nature of ultrasound imaging finds applications in various fields. A point contact excitation and detection method is generally used for visualizing the acoustic waves in Lead Zirconate Titanate (PZT) ceramics. Such an excitation method with a delta pulse generates a broadband frequency spectrum and wide directional wave vector. The presence of noise in the ultrasonic signals severely degrades the resolution and image quality. Deep learning-based signal and image denoising have been demonstrated recently. This paper bench-marked and compared several state-of-the-art deep learning image denoising methods with the classical denoising methods. The best-performing deep learning models are observed to be performing at par or, in some cases, even better than the classical methods on ultrasonic images. We further demonstrate the effectiveness and versatility of the deep learning-based denoising model for the unexplored domain of ultrasound/ultrasonic data. We conclude with a discussion on selecting the best method for denoising ultrasonic images. The impact of this work may help ultrasound-based defects identification equipment manufacturers to adopt a deep learning-based denoising model for more wider and versatile use.

References

1.
Hadizade
,
A.
,
Kamali
,
S. H.
, and
Moallem
,
M.
,
2023
, “
A Time-Domain Method for Ultrasound Concrete Health Monitoring Using In-Situ Piezoelectric Transducers
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
9
.
2.
He
,
J.
, and
Yuan
,
F.-G.
,
2016
, “
Lamb Wave-Based Subwavelength Damage Imaging Using the Dort-Music Technique in Metallic Plates
,”
Struct. Health. Monit.
,
15
(
1
), pp.
65
80
.
3.
Song
,
G.
,
Li
,
H.
,
Gajic
,
B.
,
Zhou
,
W.
,
Chen
,
P.
, and
Gu
,
H.
,
2013
, “
Wind Turbine Blade Health Monitoring With Piezoceramic-Based Wireless Sensor Network
,”
Int, J. Smart Nano Mater.
,
4
(
3
), pp.
150
166
.
4.
Bhalla
,
S.
, and
Soh
,
C. K.
,
2004
, “
Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling
,”
J. Aerosp. Eng.
,
17
(
4
), pp.
154
165
.
5.
Providakis
,
C. P.
,
Stefanaki
,
K. D.
,
Voutetaki
,
M. E.
,
Tsompanakis
,
Y.
, and
Stavroulaki
,
M.
,
2014
, “
Damage Detection in Concrete Structures Using a Simultaneously Activated Multi-Mode PZT Active Sensing System: Numerical Modelling
,”
Struct. Infrastruct. Eng.
,
10
(
11
), pp.
1451
1468
.
6.
Kirk Shung
,
K.
,
2015
,
Diagnostic Ultrasound: Imaging and Blood Flow Measurements
,
CRC Press
,
Boca Raton, FL
.
7.
Agarwal
,
V.
,
Shelke
,
A.
,
Ahluwalia
,
B. S.
,
Melandsø
,
F.
,
Kundu
,
T.
, and
Habib
,
A.
,
2020
, “
Damage Localization in Piezo-Ceramic Using Ultrasonic Waves Excited by Dual Point Contact Excitation and Detection Scheme
,”
Ultrasonics
,
108
, p.
106113
.
8.
Rathod
,
V. T.
, and
Roy Mahapatra
,
D.
,
2011
, “
Ultrasonic Lamb Wave Based Monitoring of Corrosion Type of Damage in Plate Using a Circular Array of Piezoelectric Transducers
,”
NDT&E Int.
,
44
(
7
), pp.
628
636
.
9.
Mei
,
H.
, and
Giurgiutiu
,
V.
,
2019
, “
Guided Wave Excitation and Propagation in Damped Composite Plates
,”
Struct. Health. Monit.
,
18
(
3
), pp.
690
714
.
10.
Su
,
L.
,
Zou
,
L.
,
Fong
,
C.-C.
,
Wong
,
W.-L.
,
Wei
,
F.
,
Wong
,
K.-Y.
,
Wu
,
R. S.
, and
Yang
,
M.
,
2013
, “
Detection of Cancer Biomarkers by Piezoelectric Biosensor Using PZT Ceramic Resonator as the Transducer
,”
Biosens. Bioelectron.
,
46
, pp.
155
161
.
11.
Tripathi
,
G.
,
Anowarul
,
H.
,
Agarwal
,
K.
, and
Prasad
,
D. K.
,
4216
, “
Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals
,”
Sensors
,
19
(
19
), p.
2019
.
12.
Cammarasana
,
S.
,
Nicolardi
,
P.
, and
Patanè
,
G.
,
2022
, “
Real-Time Denoising of Ultrasound Images Based on Deep Learning
,”
Med. Biol. Eng. Comput.
,
60
(
8
), pp.
2229
2244
.
13.
Kleman
,
C.
,
Anwar
,
S.
,
Liu
,
Z.
,
Gong
,
J.
,
Zhu
,
X.
,
Yunker
,
A.
,
Kettimuthu
,
R.
, and
He
,
J.
,
2023
, “
Full Waveform Inversion-Based Ultrasound Computed Tomography Acceleration Using Two-Dimensional Convolutional Neural Networks
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst
,
6
(
4
), p.
041004
.
14.
Tomasi
,
C.
, and
Manduchi
,
R.
,
1998
, “
Bilateral Filtering for Gray and Color Images
,”
Proceedings of the Sixth International Conference on Computer Vision, ICCV ‘98
,
Mimbai, India
,
Jan. 4–7
, IEEE Computer Society, p.
839
.
15.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J.-M.
,
2011
, “
Non-Local Means Denoising
,”
Image Process. On Line
,
1
, pp.
208
212
.
16.
Frost
,
V. S.
,
Stiles
,
J. A.
,
Sam Shanmugan
,
K.
, and
Holtzman
,
J. C.
,
1982
, “
A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
2
, pp.
157
166
.
17.
Kuan
,
D. T.
,
Sawchuk
,
A. A.
,
Strand
,
T. C.
, and
Chavel
,
P.
,
1985
, “
Adaptive Noise Smoothing Filter for Images With Signal-Dependent Noise
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
2
, pp.
165
177
.
18.
Tay
,
P. C.
,
Garson
,
C. D.
,
Acton
,
S. T.
, and
Hossack
,
J. A.
,
2010
, “
Ultrasound Despeckling for Contrast Enhancement
,”
IEEE Trans. Image Process.
,
19
(
7
), pp.
1847
1860
.
19.
Yu
,
Y.
, and
Acton
,
S. T.
,
2002
, “
Speckle Reducing Anisotropic Diffusion
,”
IEEE Trans. Image Process.
,
11
(
11
), pp.
1260
1270
.
20.
Dabov
,
K.
,
Foi
,
A.
,
Katkovnik
,
V.
, and
Egiazarian
,
K.
,
2007
, “
Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
,”
IEEE Trans. Image Process.
,
16
(
8
), pp.
2080
2095
.
21.
Zhang
,
K.
,
Zuo
,
W.
,
Chen
,
Y.
,
Meng
,
D.
, and
Zhang
,
L.
,
2017
, “
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
,”
IEEE Trans. Image Process.
,
26
(
7
), pp.
3142
3155
.
22.
Hinton
,
G. E.
,
5947
, “
Deep Belief Networks
,”
Scholarpedia
,
4
(
5
), p.
2009
.
23.
Vincent
,
P.
,
Larochelle
,
H.
,
Lajoie
,
I.
,
Bengio
,
Y.
,
Manzagol
,
P.-A.
, and
Bottou
,
L.
,
2010
, “
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network With a Local Denoising Criterion
,”
J. Mach. Learn. Res.
,
11
(
12
).
24.
LeCun
,
Y.
,
Haffner
,
P.
,
Bottou
,
L.
, and
Bengio
,
Y.
,
1999
, “Object Recognition With Gradient-Based Learning,”
Shape, Contour and Grouping in Computer Vision
,
Springer
,
New York
, pp.
319
345
.
25.
Wang
,
X.
,
Girshick
,
R.
,
Gupta
,
A.
, and
He
,
K.
,
2018
, “
Non-Local Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
7794
7803
.
26.
Chan
,
T.-H.
,
Jia
,
K.
,
Gao
,
S.
,
Lu
,
J.
,
Zeng
,
Z.
, and
Ma
,
Y.
,
2015
, “
Pcanet: A Simple Deep Learning Baseline for Image Classification?
,”
IEEE Trans. Image Process.
,
24
(
12
), pp.
5017
5032
.
27.
Yu
,
H.
,
Ding
,
M.
,
Zhang
,
X.
, and
Wu
,
J.
,
2018
, “
Pcanet Based Nonlocal Means Method for Speckle Noise Removal in Ultrasound Images
,”
PLoS One
,
13
(
10
), p.
e0205390
.
28.
Ma
,
Y.
,
Yang
,
F.
, and
Basu
,
A.
,
2021
, “
Edge-Guided CNN for Denoising Images From Portable Ultrasound Devices
,”
2020 25th International Conference on Pattern Recognition (ICPR)
,
Milan, Italy
,
Jan. 10–15
, pp.
6826
6833
.
29.
Mukherjee
,
S.
,
Zimmer
,
A.
,
Sun
,
X.
,
Ghuman
,
P.
, and
Cheng
,
I.
,
2020
, “
An Unsupervised Generative Neural Approach for Insar Phase Filtering and Coherence Estimation
,”
IEEE Geosci. Remote Sens. Lett.
,
18
(
11
), pp.
1971
1975
.
30.
Yu
,
S.
,
Park
,
B.
, and
Jeong
,
J.
,
2019
, “
Deep Iterative Down-Up CNN for Image Denoising
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
,
Long Beach, CA
,
June 16–20
.
31.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Long Beach, CA
, Springer, pp.
234
241
.
32.
Park
,
B.
,
Yu
,
S.
, and
Jeong
,
J.
,
2019
, “
Densely Connected Hierarchical Network for Image Denoising
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
,
Long Beach, CA
,
June 16–20
.
33.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Boston, MA
,
June 7–12
, pp.
1026
1034
.
34.
Zhang
,
Y.
,
Tian
,
Y.
,
Kong
,
Y.
,
Zhong
,
B.
, and
Fu
,
Y.
,
2020
, “
Residual Dense Network for Image Restoration
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
7
), pp.
2480
2495
.
35.
Kim
,
D.-W.
,
Chung
,
J. R.
, and
Jung
,
S.-W.
,
2019
, “
Grdn: Grouped Residual Dense Network for Real Image Denoising and GAN-Based Real-World Noise Modeling
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
.
36.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,”
Communications of the ACM
.
37.
Woo
,
S.
,
Park
,
J.
,
Lee
,
J.-Y.
, and
Kweon
,
I. S.
,
2018
, “
Cbam: Convolutional Block Attention Module
,”
Proceedings of the European Conference on Computer Vision (ECCV)
, pp.
3
19
.
38.
Yue
,
Z.
,
Yong
,
H.
,
Zhao
,
Q.
,
Meng
,
D.
, and
Zhang
,
L.
,
2019
,
Advances in Neural Information Processing Systems
,
Proceedings of the European Conference on Computer Vision (ECCV)
, pp.
1690
1701
.
39.
Yulunzhang
,
2018
, https://github.com/yulunzhang/rdn, Accessed March 14, 2023.
40.
BusterChung
,
2019
, https://github.com/busterchung/ntire_test_code, Accessed March 14, 2023.
41.
Zhao
,
Q.
,
Zhang
,
L.
,
Meng
,
D.
,
Yue
,
Z.
, and
Yong
,
H.
,
2019
, “
Variational Denoising Network: Toward Blind Noise Modeling and Removal
,”
Adv. Neural Infor. Process. Syst
.
42.
He
,
K.
,
Sun
,
J.
, and
Tang
,
X.
,
2012
, “
Guided Image Filtering
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
6
), pp.
1397
1409
.
43.
Kalimullah
,
N. M.
,
Shelke
,
A.
, and
Habib
,
A.
,
2021
, “
Multiresolution Dynamic Mode Decomposition (Mrdmd) of Elastic Waves for Damage Localisation in Piezoelectric Ceramic
,”
IEEE Access
,
9
, pp.
120512
120524
.
44.
Habib
,
A.
,
Twerdowski
,
E.
,
von Buttlar
,
M.
,
Pluta
,
M.
,
Schmachtl
,
M.
,
Wannemacher
,
R.
, and
Grill
,
W.
,
2006
, “Acoustic Holography of Piezoelectric Materials by Coulomb Excitation,”
Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems V
, Volume 6177,
SPIE
, pp.
383
390
.
45.
Habib
,
A.
,
Twerdowski
,
E.
,
von Buttlar
,
M.
,
Wannemacher
,
R.
, and
Grill
,
W.
,
2007
, “
The Influence of the Radius of the Electrodes Employed in Coulomb Excitation of Acoustic Waves in Piezoelectric Materials
,”
Health Monitoring of Structural and Biological Systems 2007, Volume 6532
,
San Diego, CA
, SPIE, pp.
381
389
.
46.
Singh
,
H.
,
Ahmed
,
A. S.
,
Melandsø
,
F.
, and
Habib
,
A.
,
2022
,
Ultrasonic Image Denoising Using Machine Learning in Point Contact Excitation and Detection Method. Ultrasonics
, p.
106834
.
47.
Wang
,
Z.
,
Bovik
,
A. C.
,
Sheikh
,
H. R.
, and
Simoncelli
,
E. P.
,
2004
, “
Image Quality Assessment: From Error Visibility to Structural Similarity
,”
IEEE Trans. Image Process.
,
13
(
4
), pp.
600
612
.
48.
Fan
,
F.-L.
,
Xiong
,
J.
,
Li
,
M.
, and
Wang
,
G.
,
2021
, “
On Interpretability of Artificial Neural Networks: A Survey
,”
IEEE Trans. Radiat. Plasma Med. Sci.
,
5
(
6
), pp.
741
760
.
49.
Krishnan
,
M.
,
2020
, “
Against Interpretability: A Critical Examination of the Interpretability Problem in Machine Learning
,”
Philos. Technol.
,
33
(
3
), pp.
487
502
.
50.
Pambrun
,
Jean-François
, and
Noumeir
,
Rita
,
2015
, “
Limitations of the SSIM Quality Metric in the Context of Diagnostic Imaging
,”
IEEE International Conference on Image Processing (ICIP)
,
Quebec, Canada
,
Sept. 27–30
, pp.
2960
2963
.
51.
Ding
,
K.
,
Ma
,
K.
,
Wang
,
S.
, and
Simoncelli
,
E. P.
,
2021
, “
Comparison of Full-Reference Image Quality Models for Optimization of Image Processing Systems
,”
Int. J. Comput. Vis.
,
129
(
4
), pp.
1258
1281
.
52.
Ndajah
,
P.
,
Kikuchi
,
H.
,
Yukawa
,
M.
,
Watanabe
,
H.
, and
Muramatsu
,
S.
,
2011
, “
An Investigation on the Quality of Denoised Images
,”
Int. J. Circuits, Syst. Signal Process.
,
5
(
4
), pp.
423
434
.
You do not currently have access to this content.