A computational damage model, which is driven by material, mechanical behavior, and nondestructive evaluation (NDE) data, is presented in this study. To collect material and mechanical behavior damage data, an aerospace grade precipitate-hardened aluminum alloy was mechanically loaded under monotonic conditions inside a scanning electron microscope, while acoustic and optical methods were used to track the damage accumulation process. In addition, to obtain experimental information about damage accumulation at the laboratory scale, a set of cyclic loading experiments was completed using three-point bending specimens made out of the same aluminum alloy and by employing the same nondestructive methods. The ensemble of recorded data for both cases was then used in a postprocessing scheme based on outlier analysis to form damage progression curves, which were subsequently used as custom damage laws in finite element (FE) simulations. Specifically, a plasticity model coupled with stiffness degradation triggered by the experimentally defined damage curves was used in custom subroutines. The results highlight the effect of the data-driven damage model on the simulated mechanical response of the geometries considered and provide an information workflow that is capable of coupling experiments with simulations that can be used for remaining useful life (RUL) estimations.

References

1.
McDowell
,
D. L.
, and
Dunne
,
F. P. E.
,
2010
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1521
1542
.
2.
Xue
,
Y.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Dale
,
M. H.
, and
Jordon
,
J. B.
,
2007
, “
Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-T651
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2810
2823
.
3.
Wisner
,
B.
,
Cabal
,
M.
,
Vanniamparambil
,
P. A.
,
Hochhalter
,
J.
,
Leser
,
W. P.
, and
Kontsos
,
A.
,
2015
, “
In Situ Microscopic Investigation to Validate Acoustic Emission Monitoring
,”
Exp. Mech.
,
55
(
9
), pp.
1705
1715
.
4.
Wisner
,
B.
, and
Kontsos
,
A.
,
2017
, “
Fatigue Damage Precursor Identification Using Nondestructive Evaluation Coupled With Electron Microscopy
,”
Fracture, Fatigue, Failure and Damage Evolution
, Vol. 8, Springer, Cham, Switzerland, pp.
1
8
.
5.
Wisner
,
B.
, and
Kontsos
,
A.
,
2017
, “
In Situ Monitoring of Particle Fracture in Aluminum Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(3), pp. 581–596.
6.
Yamakov
,
V.
,
Hochhalter
,
J. D.
,
Leser
,
W. P.
,
Warner
,
J. E.
,
Newman
,
J. A.
,
Purja Pun
,
G. P.
, and
Mishin
,
Y.
,
2016
, “
Multiscale Modeling of Sensory Properties of Co–Ni–Al Shape Memory Particles Embedded in an Al Metal Matrix
,”
J. Mater. Sci.
,
51
(
3
), pp.
1204
1216
.
7.
Habtour
,
E.
,
Cole
,
D. P.
,
Riddick
,
J. C.
,
Weiss
,
V.
,
Robeson
,
M.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Detection of Fatigue Damage Precursor Using a Nonlinear Vibration Approach
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1442
1463
.
8.
Haile
,
M. A.
,
Hall
,
A. J.
,
Yoo
,
J. H.
,
Coatney
,
M. D.
, and
Myers
,
O. J.
,
2016
, “
Detection of Damage Precursors With Embedded Magnetostrictive Particles
,”
J. Intell. Mater. Syst. Struct.
,
27
(
12
), pp.
1567
1576
.
9.
Hall
,
A. J.
,
Brennan
,
I.
,
Raymond
,
E.
,
Ghoshal
,
A.
,
Liu
,
K. C.
,
Coatney
,
M.
,
Haynes
,
R.
,
Bradley
,
N.
,
Weiss
,
V.
, and
Tzeng
,
J.
,
2013
, “
Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads
,”
Army Research Lab Aberdeen Proving Ground MD Vehicle Technology Directorate
, MD, Report No.
ARL-TR-6622
.http://www.dtic.mil/docs/citations/ADA585848
10.
Weiss
,
V.
, and
Ghoshal
,
A.
,
2014
, “
On the Search for Optimal Damage Precursors
,”
Struct. Health Monit.
,
13
(
6
), pp.
601
608
.
11.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer Science & Business Media
, Berlin.
12.
Kuna
,
M.
, and
Wippler
,
S.
,
2010
, “
A Cyclic Viscoplastic and Creep Damage Model for Lead Free Solder Alloys
,”
Eng. Fract. Mech.
,
77
(
18
), pp.
3635
3647
.
13.
Richard
,
B.
,
Ragueneau
,
F.
,
Cremona
,
C.
, and
Adelaide
,
L.
,
2010
, “
Isotropic Continuum Damage Mechanics for Concrete Under Cyclic Loading: Stiffness Recovery, Inelastic Strains and Frictional Sliding
,”
Eng. Fract. Mech.
,
77
(
8
), pp.
1203
1223
.
14.
Liu
,
P. F.
, and
Zheng
,
J. Y.
,
2010
, “
Recent Developments on Damage Modeling and Finite Element Analysis for Composite Laminates: A Review
,”
Mater. Des.
,
31
(
8
), pp.
3825
3834
.
15.
Rinaldi
,
A.
,
Krajcinovic
,
D.
, and
Mastilovic
,
S.
,
2006
, “
Statistical Damage Mechanics—Constitutive Relations
,”
J. Theor. Appl. Mech.
,
44
(3), pp. 585–602.http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v44n3p585
16.
Abanto-Bueno
,
J.
, and
Lambros
,
J.
,
2002
, “
Investigation of Crack Growth in Functionally Graded Materials Using Digital Image Correlation
,”
Eng. Fract. Mech.
,
69
(
14–16
), pp.
1695
1711
.
17.
Chan
,
K. S.
,
2010
, “
Roles of Microstructure in Fatigue Crack Initiation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1428
1447
.
18.
Dunegan
,
H.
,
Harris
,
D.
, and
Tetelman
,
A.
,
1969
, “
Detection of Fatigue Crack Growth by Acoustic Emission Techniques
,”
Seventh Symposium on Nondestructive Evaluation of Components and Materials in Aerospace, Weapons Systems, and Nuclear Applications
, San Antonio, TX, Apr. 23–25, pp.
20
31
.
19.
Hazeli
,
K.
,
Askari
,
H.
,
Cuadra
,
J.
,
Streller
,
F.
,
Carpick
,
R. W.
,
Zbib
,
H. M.
, and
Kontsos
,
A.
,
2015
, “
Microstructure-Sensitive Investigation of Magnesium Alloy Fatigue
,”
Int. J. Plast.
,
68
, pp.
55
76
.
20.
Miao
,
J.
,
Pollock
,
T. M.
, and
Wayne Jones
,
J.
,
2009
, “
Crystallographic Fatigue Crack Initiation in Nickel-Based Superalloy René 88DT at Elevated Temperature
,”
Acta Mater.
,
57
(
20
), pp.
5964
5974
.
21.
Zhang
,
W.
, and
Liu
,
Y.
,
2012
, “
In Situ SEM Testing for Crack Closure Investigation and Virtual Crack Annealing Model Development
,”
Int. J. Fatigue
,
43
, pp.
188
196
.
22.
Zhong
,
Z.
,
Ai
,
X.
,
Liu
,
Z.
,
Liu
,
J.
, and
Xu
,
Q.
,
2015
, “
Surface Morphology and Microcrack Formation for 7050-T7451 Aluminum Alloy in High Speed Milling
,”
Int. J. Adv. Manuf. Technol.
,
78
(
1–4
), pp.
281
296
.
23.
Rajaram
,
S.
,
Vanniamparambil
,
P. A.
,
Khan
,
F.
,
Bolhassani
,
M.
,
Koutras
,
A.
,
Bartoli
,
I.
,
Moon
,
F.
,
Hamid
,
A.
,
Benson Shing
,
P.
,
Tyson
,
J.
, and
Kontsos
,
A.
,
2017
, “
Full-Field Deformation Measurements During Seismic Loading of Masonry Buildings
,”
Struct. Control Health Monit.
,
24
(
4
), p.
e1903
.
24.
Vanniamparambil
,
P. A.
,
Cuadra
,
J.
,
Guclu
,
U.
,
Bartoli
,
I.
, and
Kontsos
,
A.
, “
Cross-Validated Detection of Crack Initiation in Aerospace Materials
,”
Proc. SPIE
,
9064
, p.
906429
.
25.
Payne
,
J.
,
Welsh
,
G.
,
Christ
,
R. J.
,
Nardiello
,
J.
, and
Papazian
,
J. M.
,
2010
, “
Observations of Fatigue Crack Initiation in 7075-T651
,”
Int. J. Fatigue
,
32
(
2
), pp.
247
255
.
26.
Bozek
,
J.
,
Hochhalter
,
J.
,
Veilleux
,
M.
,
Liu
,
M.
,
Heber
,
G.
,
Sintay
,
S.
,
Rollett
,
A.
,
Littlewood
,
D.
,
Maniatty
,
A.
, and
Weiland
,
H.
,
2008
, “
A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation—I: Probabilistic Simulation of Constituent Particle Cracking in AA 7075-T651
,”
Modell. Simul. Mater. Sci. Eng.
,
16
(
6
), p.
065007
.
27.
Vanniamparambil
,
P. A.
,
Guclu
,
U.
, and
Kontsos
,
A.
,
2015
, “
Identification of Crack Initiation in Aluminum Alloys Using Acoustic Emission
,”
Exp. Mech.
,
55
(
5
), pp.
837
850
.
28.
Hazeli
,
K.
,
Cuadra
,
J.
,
Streller
,
F.
,
Barr
,
C. M.
,
Taheri
,
M. L.
,
Carpick
,
R. W.
, and
Kontsos
,
A.
,
2015
, “
Three-Dimensional Effects of Twinning in Magnesium Alloys
,”
Scr. Mater.
,
100
, pp.
9
12
.
29.
Hazeli
,
K.
,
Cuadra
,
J.
,
Vanniamparambil
,
P. A.
, and
Kontsos
,
A.
,
2013
, “
In Situ Identification of Twin-Related Bands Near Yielding in a Magnesium Alloy
,”
Scr. Mater.
,
68
(
1
), pp.
83
86
.
30.
Mo
,
C.
,
Wisner
,
B.
,
Cabal
,
M.
,
Hazeli
,
K.
,
Ramesh
,
K.
,
El Kadiri
,
H.
,
Al-Samman
,
T.
,
Molodov
,
K.
,
Molodov
,
D.
, and
Kontsos
,
A.
,
2016
, “
Acoustic Emission of Deformation Twinning in Magnesium
,”
Materials
,
9
(
8
), p.
662
.
31.
Carroll
,
J. D.
,
Abuzaid
,
W.
,
Lambros
,
J.
, and
Sehitoglu
,
H.
,
2013
, “
High Resolution Digital Image Correlation Measurements of Strain Accumulation in Fatigue Crack Growth
,”
Int. J. Fatigue
,
57
, pp.
140
150
.
32.
Kammers
,
A.
, and
Daly
,
S.
,
2011
, “
Small-Scale Patterning Methods for Digital Image Correlation Under Scanning Electron Microscopy
,”
Meas. Sci. Technol.
,
22
(
12
), p.
125501
.
33.
Kammers
,
A. D.
, and
Daly
,
S.
,
2013
, “
Digital Image Correlation Under Scanning Electron Microscopy: Methodology and Validation
,”
Exp. Mech.
,
53
(
9
), pp.
1743
1761
.
34.
Bianchetti
,
R.
,
Hamstad
,
M. A.
, and
Mukherjee
,
A. K.
,
1976
, “
Origin of Burst-Type Acoustic Emission in Unflawed 7075-T6 Aluminum
,”
J. Test. Eval.
,
4
(5), pp. 313–318.
35.
Frederick
,
J.
, and
Felbeck
,
D.
,
1972
, “
Dislocation Motion as a Source of Acoustic Emission
,”
Acoustic Emission
,
ASTM International
, Baltimore, MD.
36.
Baram
,
J.
, and
Rosen
,
M.
,
1979
, “
Acoustic Emission Generated During the Tensile Testing of Aluminium Alloys
,”
Mater. Sci. Eng.
,
40
(
1
), pp.
21
29
.
37.
Carmi
,
R.
,
Vanniamparambil
,
P. A.
,
Cuadra
,
J.
,
Hazeli
,
K.
,
Rajaram
,
S.
,
Guclu
,
U.
,
Bussiba
,
A.
,
Bartoli
,
I.
, and
Kontsos
,
A.
,
2015
, “
Acoustic Emission and Digital Image Correlation as Complementary Techniques for Laboratory and Field Research
,”
Advances in Acoustic Emission Technology: Proceedings of the World Conference on Acoustic Emission–2013
,
G.
Shen
,
Z.
Wu
, and
J.
Zhang
, eds.,
Springer
,
New York
, pp.
605
622
.
38.
Cousland
,
S. M.
, and
Scala
,
C. M.
,
1983
, “
Acoustic Emission During the Plastic Deformation of Aluminium Alloys 2024 and 2124
,”
Mater. Sci. Eng.
,
57
(
1
), pp.
23
29
.
39.
Roberts
,
T. M.
, and
Talebzadeh
,
M.
,
2003
, “
Acoustic Emission Monitoring of Fatigue Crack Propagation
,”
J. Constr. Steel Res.
,
59
(
6
), pp.
695
712
.
40.
Vanniamparambil
,
P. A.
,
Bartoli
,
I.
,
Hazeli
,
K.
,
Cuadra
,
J.
,
Schwartz
,
E.
,
Saralaya
,
R.
, and
Kontsos
,
A.
,
2012
, “
An Integrated Structural Health Monitoring Approach for Crack Growth Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1563
1573
.
41.
Iziumova
,
A.
, and
Plekhov
,
O.
,
2014
, “
Calculation of the Energy J-Integral in Plastic Zone Ahead of a Crack Tip by Infrared Scanning
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
12
), pp.
1330
1337
.
42.
Plekhov
,
O.
,
Palin-Luc
,
T.
,
Saintier
,
N.
,
Uvarov
,
S.
, and
Naimark
,
O.
,
2005
, “
Fatigue Crack Initiation and Growth in a 35CrMo4 Steel Investigated by Infrared Thermography
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
1–2
), pp.
169
178
.
43.
Wagner
,
D.
,
Ranc
,
N.
,
Bathias
,
C.
, and
Paris
,
P. C.
,
2010
, “
Fatigue Crack Initiation Detection by an Infrared Thermography Method
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
1
), pp.
12
21
.
44.
Ayres
,
J. W.
,
Lalande
,
F.
,
Chaudhry
,
Z.
, and
Rogers
,
C. A.
,
1998
, “
Qualitative Impedance-Based Health Monitoring of Civil Infrastructures
,”
Smart Mater. Struct.
,
7
(
5
), p.
599
.
45.
Lim
,
Y. Y.
, and
Soh
,
C. K.
,
2011
, “
Fatigue Life Estimation of a 1D Aluminum Beam Under Mode-I Loading Using Theelectromechanical Impedance Technique
,”
Smart Mater. Struct.
,
20
(
12
), p.
125001
.
46.
Park
,
G.
,
Cudney Harley
,
H.
, and
Inman Daniel
,
J.
,
2000
, “
Impedance-Based Health Monitoring of Civil Structural Components
,”
J. Infrastruct. Syst.
,
6
(
4
), pp.
153
160
.
47.
Finlayson
,
R. D.
,
Friesel
,
M.
,
Carlos
,
M.
,
Cole
,
P.
, and
Lenain
,
J.
,
2001
, “
Health Monitoring of Aerospace Structures With Acoustic Emission and Acousto-Ultrasonics
,”
Insight
,
43
(
3
), pp.
155
158
.http://www.pacndt.com/downloads/Insight%20AEHums.pdf
48.
Saka
,
M.
, and
Uchikawa
,
T.
,
1995
, “
Simplified NDE of a Closed Vertical Crack Using Ultrasonics
,”
NDT E Int.
,
28
(
5
), pp.
289
296
.
49.
Tittmann
,
B. R.
, and
Buck
,
O.
,
1980
, “
Fatigue Lifetime Prediction With the Aid of SAW NDE
,”
J. Nondestr. Eval.
,
1
(
2
), pp.
123
136
.
50.
Barbero
,
E. J.
,
Abdelal
,
G. F.
, and
Caceres
,
A.
,
2005
, “
A Micromechanics Approach for Damage Modeling of Polymer Matrix Composites
,”
Compos. Struct.
,
67
(
4
), pp.
427
436
.
51.
Kompalka
,
A. S.
,
Reese
,
S.
, and
Bruhns
,
O. T.
,
2007
, “
Experimental Investigation of Damage Evolution by Data-Driven Stochastic Subspace Identification and Iterative Finite Element Model Updating
,”
Arch. Appl. Mech.
,
77
(
8
), pp.
559
573
.
52.
Zárate
,
B. A.
,
Caicedo
,
J. M.
,
Yu
,
J.
, and
Ziehl
,
P.
,
2012
, “
Probabilistic Prognosis of Fatigue Crack Growth Using Acoustic Emission Data
,”
J. Eng. Mech.
,
138
(
9
), pp.
1101
1111
.
53.
Loutas
,
T.
,
Eleftheroglou
,
N.
, and
Zarouchas
,
D.
,
2017
, “
A Data-Driven Probabilistic Framework Towards the In-Situ Prognostics of Fatigue Life of Composites Based on Acoustic Emission Data
,”
Compos. Struct.
,
161
, pp.
522
529
.
54.
Davis
,
J.
,
1993
,
ASM Specialty Handbook: Aluminum and Aluminum Alloys
,
ASM International
,
Materials Park, OH
.
55.
Merati
,
A.
,
2005
, “
A Study of Nucleation and Fatigue Behavior of an Aerospace Aluminum Alloy 2024-T3
,”
Int. J. Fatigue
,
27
(
1
), pp.
33
44
.
56.
Xue
,
Y.
,
El Kadiri
,
H.
,
Horstemeyer
,
M. F.
,
Jordon
,
J. B.
, and
Weiland
,
H.
,
2007
, “
Micromechanisms of Multistage Fatigue Crack Growth in a High-Strength Aluminum Alloy
,”
Acta Mater.
,
55
(
6
), pp.
1975
1984
.
57.
Baxevanakis
,
K. P.
,
Mo
,
C.
,
Cabal
,
M.
, and
Kontsos
,
A.
,
2017
, “
An Integrated Approach to Model Strain Localization Bands in Magnesium Alloys
,”
Comput. Mech.
,
61
(1–2), pp. 119–135.
58.
ABAQUS
,
2013
, “Version 6.13, 2013. User's Manual,”
Dassault Systèmes
,
Pawtucket, RI
.
59.
Wang
,
Y.
, and
Wang
,
Z.
,
2016
, “
Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy Under Cyclic Loading
,”
Adv. Mater. Sci. Eng.
,
2016
, p.
16
.
60.
Liu
,
A. F.
,
2005
,
Mechanics and Mechanisms of Fracture: An Introduction
,
ASM International
, Materials Park, OH.
You do not currently have access to this content.