Abstract

Additive manufacturing (AM) parts retain a certain degree of individuality and could suffer from a combination of different defect types, and therefore the nondestructive evaluation on AM parts remains a challenging task. Engineering non-contact and nondestructive real-time inspection and in situ quality assurance of AM parts would be a net improvement compared to current quality control methods that are conducted post-production. Here, the authors propose to combine the use of a laser vibrometer with a compression-driven shock tube to assess the quality of AM parts through the evaluation of the vibration spectra of the part. An AM of a cylindrical part was selected for the study, along with different defect types and sizes. These defects include internal voids of different sizes at different locations, local changes in thickness (infill), and local changes in melting temperatures. A numerical model was created and validated using experimental data to conduct model-assisted probability of detection (MAPOD). Results were analyzed by evaluating correlation matrices between different models. Results showed that vibration spectra induced by a shock wave were sensitive to different types and sizes of defects under the studied geometry. The defect index yielded an approximately linear relationship with respect to defect void severity. MAPOD curve studies revealed a minimum detectable void defect of 0.039% of the AM part’s volume.

References

1.
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2019
,
Additive Manufacturing
,
CRC Press
,
Boca Raton, FL
.
2.
Balakrishnan
,
H. K.
,
Badar
,
F.
,
Doeven
,
E. H.
,
Novak
,
J. I.
,
Merenda
,
A.
,
Dumée
,
L. F.
,
Loy
,
J.
, and
Guijt
,
R. M.
,
2020
, “
3d Printing: An Alternative Microfabrication Approach With Unprecedented Opportunities in Design
,”
Anal. Chem.
,
93
(
1
), pp.
350
366
.
3.
Nazir
,
A.
,
Azhar
,
A.
,
Nazir
,
U.
,
Liu
,
Y.-F.
,
Qureshi
,
W. S.
,
Chen
,
J.-E.
, and
Alanazi
,
E.
,
2021
, “
The Rise of 3d Printing Entangled With Smart Computer Aided Design During COVID-19 Era
,”
J. Manuf. Syst.
,
60
, pp.
774
786
.
4.
Zhang
,
S.
,
Vijayavenkataraman
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2018
, “
A Review on the Use of Computational Methods to Characterize, Design, and Optimize Tissue Engineering Scaffolds, With a Potential in 3d Printing Fabrication
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
107
(
5
), pp.
1329
1351
.
5.
Sathish
,
T.
,
Vijayakumar
,
M.
, and
Ayyangar
,
A. K.
,
2018
, “
Design and Fabrication of Industrial Components Using 3d Printing
,”
Mater. Today: Proc.
,
5
(
6
), pp.
14489
14498
.
6.
Wei
,
Q.
,
Li
,
H.
,
Liu
,
G.
,
He
,
Y.
,
Wang
,
Y.
,
Tan
,
Y. E.
,
Wang
,
D.
,
Peng
,
X.
,
Yang
,
G.
, and
Tsubaki
,
N.
,
2020
, “
Metal 3d Printing Technology for Functional Integration of Catalytic System
,”
Nat. Commun.
,
11
(
1
), pp.
1
8
.
7.
Abar
,
B.
,
Alonso-Calleja
,
A.
,
Kelly
,
A.
,
Kelly
,
C.
,
Gall
,
K.
, and
West
,
J. L.
,
2020
, “
3d Printing of High-Strength, Porous, Elastomeric Structures to Promote Tissue Integration of Implants
,”
J. Biomed. Mater. Res. Part A
,
109
(
1
), pp.
54
63
.
8.
Francis
,
V.
,
Garg
,
S.
,
Saxena
,
K. K.
,
Jain
,
P. K.
,
Lade
,
J.
, and
Kumar
,
D.
,
2022
, “
Effect of Chemical and Heat Treatment on 3d Printed Parts: Nanoparticles Embedment Approach
,”
Adv. Mater. Proc. Technol.
, pp.
1
12
.
9.
Barino
,
F. O.
,
Faraco-Filho
,
R. L.
, and
Campos
,
D.
,
2022
, “
3d-Printed Force Sensitive Structure Using Embedded Long-Period Fiber Grating
,”
Opt. Laser Technol.
,
148
, p.
107697
.
10.
Aimar
,
A.
,
Palermo
,
A.
, and
Innocenti
,
B.
,
2019
, “
The Role of 3d Printing in Medical Applications: A State of the Art
,”
J. Healthcare Eng.
,
2019
, pp.
1
10
.
11.
Yan
,
Q.
,
Dong
,
H.
,
Su
,
J.
,
Han
,
J.
,
Song
,
B.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2018
, “
A Review of 3d Printing Technology for Medical Applications
,”
Engineering
,
4
(
5
), pp.
729
742
.
12.
Raykar
,
S. J.
,
Narke
,
M. M.
, and
Desai
,
S. B.
,
2019
, “
Manufacturing of 3d Printed Sports Helmet
,” Techno-Societal 2018,
Springer International Publishing
,
New York
, pp.
771
778
.
13.
Soltani
,
A.
,
Noroozi
,
R.
,
Bodaghi
,
M.
,
Zolfagharian
,
A.
, and
Hedayati
,
R.
,
2020
, “
3d Printing On-Water Sports Boards With Bio-Inspired Core Designs
,”
Polymers
,
12
(
1
), p.
250
.
14.
Valino
,
A. D.
,
Dizon
,
J. R. C.
,
Espera
,
A. H.
,
Chen
,
Q.
,
Messman
,
J.
, and
Advincula
,
R. C.
,
2019
, “
Advances in 3d Printing of Thermoplastic Polymer Composites and Nanocomposites
,”
Prog. Polym. Sci.
,
98
, p.
101162
.
15.
Zhou
,
L.-Y.
,
Fu
,
J.
, and
He
,
Y.
,
2020
, “
A Review of 3d Printing Technologies for Soft Polymer Materials
,”
Adv. Funct. Mater.
,
30
(
28
), p.
2000187
.
16.
Teizer
,
J.
,
Blickle
,
A.
,
King
,
T.
,
Leitzbach
,
O.
,
Guenther
,
D.
,
Mattern
,
H.
, and
König
,
M.
,
2018
, “BIM for 3d Printing in Construction,”
Building Information Modeling
, Vol.
20
,
Springer International Publishing
,
Emerald
, pp.
421
446
.
17.
Ali
,
M. H.
,
Issayev
,
G.
,
Shehab
,
E.
, and
Sarfraz
,
S.
,
2022
, “
A Critical Review of 3D Printing and Digital Manufacturing in Construction Engineering
,”
Rapid Prototyp. J.
,
28
(
7
), pp.
1312
1324
.
18.
Schouten
,
M.
,
Wolterink
,
G.
,
Dijkshoorn
,
A.
,
Kosmas
,
D.
,
Stramigioli
,
S.
, and
Krijnen
,
G.
,
2021
, “
A Review of Extrusion-Based 3d Printing for the Fabrication of Electro- and Biomechanical Sensors
,”
IEEE Sens. J.
,
21
(
11
), pp.
12900
12912
.
19.
Zhao
,
W.
,
Wang
,
Z.
,
Zhang
,
J.
,
Wang
,
X.
,
Xu
,
Y.
,
Ding
,
N.
, and
Peng
,
Z.
,
2021
, “
Vat Photopolymerization 3d Printing of Advanced Soft Sensors and Actuators: From Architecture to Function
,”
Adv. Mater. Technol.
,
6
(
8
), p.
2001218
.
20.
Dioumaev
,
A. K.
,
Lal
,
A. K.
,
Dimas
,
D.
,
Trolinger
,
J. D.
,
Novak
,
E.
,
Trolinger
,
J. D.
, and
Wilcox
,
C. C.
,
2021
, “Determining Material Parameters With Resonant Acoustic Spectroscopy,”
Applied Optical Metrology IV
,
SPIE
,
Bellingham
, pp.
84
92
.
21.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T.-L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
645
669
.
22.
Xu
,
L.
,
Huang
,
Q.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2013
, “
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
,” Volume 2A: Advanced Manufacturing,
American Society of Mechanical Engineers
,
New York City
, p. V02AT02A018.
23.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-Ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
), p.
072001
.
24.
Li
,
J.
,
Jin
,
R.
, and
Yu
,
H. Z.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
.
25.
Steed
,
C. A.
,
Halsey
,
W.
,
Dehoff
,
R.
,
Yoder
,
S. L.
,
Paquit
,
V.
, and
Powers
,
S.
,
2017
, “
Falcon: Visual Analysis of Large, Irregularly Sampled, and Multivariate Time Series Data in Additive Manufacturing
,”
Comput. Graph.
,
63
, pp.
50
64
.
26.
Tofail
,
S. A.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
27.
Ben
,
D.
, and
Vesga
,
W.
,
2020
, “Non-Destructive Evaluation for Additive Manufacturing,”
Precision Metal Additive Manufacturing
,
R.
Leach
, and
S.
Carmignato
, eds.,
CRC Press
, pp.
195
236
.
28.
Holzmond
,
O.
, and
Li
,
X.
,
2017
, “
In Situ Real Time Defect Detection of 3d Printed Parts
,”
Addit. Manuf.
,
17
, pp.
135
142
.
29.
Borish
,
M.
,
Post
,
B. K.
,
Roschli
,
A.
,
Chesser
,
P. C.
,
Love
,
L. J.
, and
Gaul
,
K. T.
,
2018
, “
Defect Identification and Mitigation Via Visual Inspection in Large-Scale Additive Manufacturing
,”
JOM
,
71
(
3
), pp.
893
899
.
30.
Rossi
,
A.
,
Moretti
,
M.
, and
Senin
,
N.
,
2021
, “
Layer Inspection Via Digital Imaging and Machine Learning for In-Process Monitoring of Fused Filament Fabrication
,”
J. Manuf. Process.
,
70
, pp.
438
451
.
31.
Ma
,
G.
,
Salman
,
N. M.
,
Wang
,
L.
, and
Wang
,
F.
,
2020
, “
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Interlayer Bonding of Cementitious Composite for 3d Printing
,”
Constr. Build. Mater.
,
244
, p.
118305
.
32.
Sabyrov
,
N.
,
Abilgaziyev
,
A.
, and
Ali
,
M. H.
,
2020
, “
Enhancing Interlayer Bonding Strength of FDM 3d Printing Technology by Diode Laser-Assisted System
,”
Int. J. Adv. Manuf. Technol.
,
108
(
1–2
), pp.
603
611
.
33.
Tam
,
J. H.
,
Ong
,
Z. C.
,
Ismail
,
Z.
,
Ang
,
B. C.
, and
Khoo
,
S. Y.
,
2016
, “
Identification of Material Properties of Composite Materials Using Nondestructive Vibrational Evaluation Approaches: A Review
,”
Mech. Adv. Mater. Struct.
,
24
(
12
), pp.
971
986
.
34.
Trolinger
,
J. D.
,
Dioumaev
,
A. K.
,
Lal
,
A. K.
,
Valdevit
,
L.
,
Zhang
,
Y.
,
Novak
,
E.
, and
Trolinger
,
J. D.
,
2019
, “In-Situ Monitoring and Quality Control for In-Space Additive Manufacturing Using Laser Acoustical Resonance Spectroscopy,”
Applied Optical Metrology III
,
SPIE
,
Bellingham
, pp.
292
307
.
35.
Obaton
,
A.-F.
,
Wang
,
Y.
,
Butsch
,
B.
, and
Huang
,
Q.
,
2021
, “
A Non-Destructive Resonant Acoustic Testing and Defect Classification of Additively Manufactured Lattice Structures
,”
Weld. World
,
65
(
3
), pp.
361
371
.
36.
Dimas
,
D.
,
Lal
,
A.
,
Dioumaev
,
A. K.
,
Trolinger
,
J.
,
Shull
,
P. J.
,
Yu
,
T.-Y.
,
Gyekenyesi
,
A. L.
, and
Wu
,
H. F.
,
2020
, “Non-Destructive Evaluation of Additively Manufactured Metal (AlSi10Mg) Brackets Using Laser Doppler Vibrometry and Acoustical Resonance Spectroscopy,”
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIV
,
SPIE
,
Bellingham
, pp.
171
182
.
37.
Bozek
,
E.
,
McGuigan
,
S.
,
Snow
,
Z.
,
Reutzel
,
E. W.
,
Rivière
,
J.
, and
Shokouhi
,
P.
,
2021
, “
Nonlinear Resonance Ultrasonic Spectroscopy (NRUS) for the Quality Control of Additively Manufactured Samples
,”
NDT E Int.
,
123
, p.
102495
.
38.
Livings
,
R. A.
,
Biedermann
,
E. J.
,
Wang
,
C.
,
Chung
,
T.
,
James
,
S.
,
Waller
,
J. M.
,
Volk
,
S.
,
Krishnan
,
A.
, and
Collins
,
S.
,
2020
, “Nondestructive Evaluation of Additive Manufactured Parts Using Process Compensated Resonance Testing,”
Structural Integrity of Additive Manufactured Parts
,
ASTM International
,
West Conshohocken, PA
, pp.
165
205
.
39.
Lal
,
A. K.
,
Dioumaev
,
A. K.
,
Dimas
,
D.
,
Trolinger
,
J. D.
,
Novak
,
E.
,
Trolinger
,
J. D.
, and
Wilcox
,
C. C.
,
2021
, “Defect Detection in Additive Manufactured Products With a New Photonics Procedure: A Case Study,”
Applied Optical Metrology IV
,
SPIE
,
Bellingham
, pp.
93
102
.
40.
Lopez
,
A.
,
Bacelar
,
R.
,
Pires
,
I.
,
Santos
,
T. G.
,
Sousa
,
J. P.
, and
Quintino
,
L.
,
2018
, “
Nondestructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
298
306
.
41.
Chauveau
,
D.
,
2018
, “
Review of NDT and Process Monitoring Techniques Usable to Produce High-Wuality Parts by Welding or Additive Manufacturing
,”
Weld. World
,
62
(
5
), pp.
1097
1118
.
42.
Garot
,
C.
,
Bettega
,
G.
, and
Picart
,
C.
,
2020
, “
Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics
,”
Adv. Funct. Mater.
,
31
(
5
), p.
2006967
.
43.
Reda
,
R.
,
Zanza
,
A.
,
Mazzoni
,
A.
,
Cicconetti
,
A.
,
Testarelli
,
L.
, and
Nardo
,
D. D.
,
2021
, “
An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review
,”
J. Imag.
,
7
(
5
), p.
75
.
44.
Allevi
,
G.
,
Cibeca
,
M.
,
Fioretti
,
R.
,
Marsili
,
R.
,
Montanini
,
R.
, and
Rossi
,
G.
,
2018
, “
Noncontact Measurement Techniques for Qualification of Aerospace Brackets Made by Additive Manufacturing Technologies
,”
J. Phys.: Conf. Ser.
,
1110
, p.
012002
.
45.
Allevi
,
G.
,
Cibeca
,
M.
,
Fioretti
,
R.
,
Marsili
,
R.
,
Montanini
,
R.
, and
Rossi
,
G.
,
2018
, “
Qualification of Additively Manufactured Aerospace Brackets: A Comparison Between Thermoelastic Stress Analysis and Theoretical Results
,”
Measurement
,
126
, pp.
252
258
.
46.
Han
,
D.-H.
,
Flynn
,
E. B.
,
Farrar
,
C. R.
, and
Kang
,
L.-H.
,
2019
, “
A Study on the In-Situ Melt Pool Size Estimation Method for Directed-Energy Additive Manufacturing Based on Modal Parameters
,”
3D Print. Addit. Manuf.
,
6
(
2
), pp.
99
112
.
47.
Ehlers
,
T.
,
Tatzko
,
S.
,
Wallaschek
,
J.
, and
Lachmayer
,
R.
,
2021
, “
Design of Particle Dampers for Additive Manufacturing
,”
Addit. Manuf.
,
38
, p.
101752
.
48.
Zhang
,
L.
,
Jackson
,
W. J.
, and
Bentil
,
S. A.
,
2021
, “
Deformation of an Airfoil-Shaped Brain Surrogate Under Shock Wave Loading
,”
J. Mech. Behav. Biomed. Mater.
,
120
, p.
104513
.
49.
Sutar
,
S.
, and
Ganpule
,
S.
,
2022
, “
Evaluation of Blast Simulation Methods for Modeling Blast Wave Interaction With Human Head
,”
ASME J. Biomech. Eng.
,
144
(
5
), p.
051009
.
50.
Kumar
,
R.
, and
Nedungadi
,
A.
,
2020
, “
Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures
,”
Front. Neurol.
,
11
, p.
90
.
51.
Singh
,
A.
,
Aravind
,
S.
, and
Kannan
,
B. T.
,
2020
, “
Studies on Blasting Effects of Shock Waves From a Small-Scale Shock Tube
,” AIP Conference Proceedings,
AIP Publishing, Bangalore, India
, p.
030003
.
52.
Wang
,
P.
,
Chang
,
Y.
,
Niu
,
B.
,
Dong
,
X.
, and
Jia
,
M.
,
2020
, “
Influence of the Functional Group of Fuels on the Construction of Skeletal Chemical Mechanisms: A Case Study of 1-Hexane, 1-Hexene, and 1-Hexanol
,”
Combust. Flame
,
221
, pp.
120
135
.
53.
Alturaifi
,
S.
,
Mulvihill
,
C.
,
Mathieu
,
O.
, and
Petersen
,
E.
,
2021
, “
Speciation Measurements in Shock Tubes for Validation of Complex Chemical Kinetics Mechanisms: Application to 2-Methyl- 2-Butene Oxidation
,”
Combust. Flame
,
225
, pp.
196
213
.
54.
Zhang
,
L.
,
Jackson
,
W. J.
, and
Bentil
,
S. A.
,
2021
, “
Numerical and Experimental Investigation of an Ultrasoft Elastomer Under Shock Wave Loading
,”
J. Dyn. Behav. Mater.
,
8
(
1
), pp.
137
154
.
55.
Ma
,
W.
,
Zhao
,
X.
, and
Wang
,
K.
,
2020
, “A Fluid-Structure Coupled Computational Model for the Certification of Shock-Resistant Elastomer Coatings,”
Volume 2A: Structures, Safety, and Reliability
,
American Society of Mechanical Engineers
,
New York City
, pp.
23
33
.
56.
Yan
,
J.
,
Laflamme
,
S.
, and
Leifsson
,
L.
,
2020
, “
Computational Framework for Dense Sensor Network Evaluation Based on Model-Assisted Probability of Detection
,”
Mater. Eval.
,
78
(
5
), pp.
573
583
.
57.
Pavăl
,
M. S.
,
Popescu
,
A.
, and
Zahariea
,
D.
,
2020
, “
CFD Analysis of a Round Shaped Air Cushion Vehicle With Flexible Skirt Segments at 90° and Different Air Clearance Height
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
997
(
1
), p.
012151
.
58.
Hosseini
,
S.
, and
Tafreshi
,
H. V.
,
2012
, “
Modeling Particle-Loaded Single Fiber Efficiency and Fiber Drag Using ANSYS-Fluent CFD Code
,”
Comput. Fluids
,
66
, pp.
157
166
.
59.
Zhao
,
M.
,
Wan
,
D.
, and
Gao
,
Y.
,
2021
, “
Comparative Study of Different Turbulence Models for Cavitational Flows Around NACA0012 Hydrofoil
,”
J. Marine Sci. Eng.
,
9
(
7
), p.
742
.
60.
Aldrin
,
J. C.
,
Knopp
,
J. S.
, and
Sabbagh
,
H. A.
,
2013
, “
Bayesian Methods in Probability of Detection Estimation and Model-Assisted Probability of Detection Evaluation
,” AIP Conference Proceedings,
AIP, Kuala Lumpur, Malaysia
, pp.
1733
1740
.
61.
Gratiet
,
L. L.
,
Iooss
,
B.
,
Blatman
,
G.
,
Browne
,
T.
,
Cordeiro
,
S.
, and
Goursaud
,
B.
,
2016
, “
Model Assisted Probability of Detection Curves: New Statistical Tools and Progressive Methodology
,”
J. Nondestruct. Eval.
,
36
(
1
), pp.
1
12
.
62.
Dym
,
C. L.
, and
Williams
,
H. E.
,
2007
, “
Estimating Fundamental Frequencies of Tall Buildings
,”
J. Struct. Eng.
,
133
(
10
), pp.
1479
1483
.
63.
Bartalini
,
S.
,
Borri
,
S.
,
Galli
,
I.
,
Giusfredi
,
G.
,
Mazzotti
,
D.
,
Edamura
,
T.
,
Akikusa
,
N.
,
Yamanishi
,
M.
, and
Natale
,
P. D.
,
2011
, “
Measuring Frequency Noise and Intrinsic Linewidth of a Room-Temperature DFB Quantum Cascade Laser
,”
Opt. Express
,
19
(
19
), p.
17996
.
64.
Rohrbaugh
,
J. W.
,
Sirevaag
,
E. J.
, and
Richter
,
E. J.
,
2013
, “
Laser Doppler Vibrometry Measurement of the Mechanical Myogram
,”
Rev. Sci. Instrum.
,
84
(
12
), p.
121706
.
65.
Murugan
,
T.
,
Dora
,
C. L.
,
De
,
S.
, and
Das
,
D.
,
2018
, “
A Comparative Three-Dimensional Study of Impulsive Flow Emanating From a Shock Tube for Shock Mach Number 1.6
,”
J. Vis.
,
21
(
6
), pp.
921
934
.
66.
Zank
,
G. P.
,
Zhou
,
Y.
,
Matthaeus
,
W. H.
, and
Rice
,
W. K. M.
,
2002
, “
The Interaction of Turbulence With Shock Waves: A Basic Model
,”
Phys. Fluids
,
14
(
11
), pp.
3766
3774
.
You do not currently have access to this content.