Abstract

The coronavirus (COVID-19) pandemic, especially, the transmission of the virus via infected contact surfaces, has put increased emphasis on the need to fabricate antimicrobial surfaces to protect against various deadly pathogens. Laser surface texturing (LST), one of the common surface modification techniques, has been successful for antifouling applications to improve resistance against bacterial adhesion. In this short review, we aim to explore the possibilities of using LST for fabricating surfaces against viruses. The characteristics influencing the interaction of surfaces with virus and bacteria and an overview of antibacterial surfaces created by LST are briefly described first before assessing the current limitations with LST for fabricating antiviral surfaces. Finally, we highlight the potential directions using LST to realize the nanoscale surface features necessary for antiviral surfaces.

References

1.
Rawlinson
,
S.
,
Ciric
,
L.
, and
Cloutman-Green
,
E.
,
2020
, “
COVID-19 Pandemic—Let's Not Forget Surfaces
,”
J. Hosp. Infect.
,
105
(
4
), pp.
790
791
.10.1016/j.jhin.2020.05.022
2.
van Doremalen
,
N.
,
Bushmaker
,
T.
,
Morris
,
D. H.
,
Holbrook
,
M. G.
,
Gamble
,
A.
,
Williamson
,
B. N.
,
Tamin
,
A.
,
Harcourt
,
J. L.
,
Thornburg
,
N. J.
,
Gerber
,
S. I.
,
Lloyd-Smith
,
J. O.
,
de Wit
,
E.
, and
Munster
,
V. J.
,
2020
, “
Aerosol and Surface Stability of SARS-CoV-2 as Compared With SARS-CoV-1
,”
N. Engl. J. Med.
,
382
(
16
), pp.
1564
1567
.10.1056/NEJMc2004973
3.
Kampf
,
G.
,
Todt
,
D.
,
Pfaender
,
S.
, and
Steinmann
,
E.
,
2020
, “
Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation With Biocidal Agents
,”
J. Hosp. Infect.
,
104
(
3
), pp.
246
251
.10.1016/j.jhin.2020.01.022
4.
Bueckert
,
M.
,
Gupta
,
R.
,
Gupta
,
A.
,
Garg
,
M.
, and
Mazumder
,
A.
,
2020
, “
Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission
,”
Materials (Basel)
,
13
(
22
), p.
5211
.10.3390/ma13225211
5.
Linklater
,
D. P.
,
Baulin
,
V. A.
,
Juodkazis
,
S.
,
Crawford
,
R. J.
,
Stoodley
,
P.
, and
Ivanova
,
E. P.
,
2021
, “
Mechano-Bactericidal Actions of Nanostructured Surfaces
,”
Nat. Rev. Microbiol.
,
19
(
1
), pp.
8
22
.10.1038/s41579-020-0414-z
6.
Genzer
,
J.
, and
Efimenko
,
K.
,
2006
, “
Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review
,”
Biofouling
,
22
(
5
), pp.
339
360
.10.1080/08927010600980223
7.
Hasan
,
J.
,
Crawford
,
R. J.
, and
Ivanova
,
E. P.
,
2013
, “
Antibacterial Surfaces: The Quest for a New Generation of Biomaterials
,”
Trends Biotechnol.
,
31
(
5
), pp.
295
304
.10.1016/j.tibtech.2013.01.017
8.
Otter
,
J.
,
Brophy
,
K.
,
Palmer
,
J.
,
Harrison
,
N.
,
Riley
,
J.
,
Williams
,
D.
, and
Larrouy-Maumus
,
G.
,
2020
,
Smart Surfaces to Tackle Infection and Antimicrobial Resistance
,” Briefing paper,
Imperial College London
, London, UK.
9.
Joonaki
,
E.
,
Hassanpouryouzband
,
A.
,
Heldt
,
C. L.
, and
Areo
,
O.
,
2020
, “
Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions
,”
Chem
,
6
(
9
), pp.
2135
2146
.10.1016/j.chempr.2020.08.001
10.
Xue
,
X.
,
Ball
,
J. K.
,
Alexander
,
C.
, and
Alexander
,
M. R.
,
2020
, “
All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2
,”
Matter
,
3
(
5
), pp.
1433
1441
.10.1016/j.matt.2020.10.006
11.
Chin
,
A. W. H.
,
Chu
,
J. T. S.
,
Perera
,
M. R. A.
,
Hui
,
K. P. Y.
,
Yen
,
H.-L.
,
Chan
,
M. C. W.
,
Peiris
,
M.
, and
Poon
,
L. L. M.
,
2020
, “
Stability of SARS-CoV-2 in Different Environmental Conditions
,”
Lancet Microbe
,
1
(
1
), p.
e10
.10.1016/S2666-5247(20)30003-3
12.
Casanova
,
L. M.
,
Jeon
,
S.
,
Rutala
,
W. A.
,
Weber
,
D. J.
, and
Sobsey
,
M. D.
,
2010
, “
Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces
,”
Appl. Environ. Microbiol.
,
76
(
9
), pp.
2712
2717
.10.1128/AEM.02291-09
13.
Sun
,
Z.
, and
Ostrikov
,
K. (K. ).
,
2020
, “
Future Antiviral Surfaces: Lessons From COVID-19 Pandemic
,”
Sustain. Mater. Technol.
,
25
, p.
e00203
.10.1016/j.susmat.2020.e00203
14.
Hsu
,
B. B.
,
Wong
,
S. Y.
,
Hammond
,
P. T.
,
Chen
,
J.
, and
Klibanov
,
A. M.
,
2011
, “
Mechanism of Inactivation of Influenza Viruses by Immobilized Hydrophobic Polycations
,”
Proc. Natl. Acad. Sci.
,
108
(
1
), pp.
61
66
.10.1073/pnas.1017012108
15.
Pandey
,
L. M.
,
2020
, “
Surface Engineering of Personal Protective Equipments (PPEs) to Prevent the Contagious Infections of SARS-CoV-2
,”
Surf. Eng.
,
36
(
9
), pp.
901
907
.10.1080/02670844.2020.1801034
16.
Majhi
,
S.
, and
Mishra
,
A.
,
2020
,
Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth BT - Engineered Antimicrobial Surfaces
,
S.
Snigdha
,
S.
Thomas
,
E. K.
Radhakrishnan
, and
N.
Kalarikkal
, eds.,
Springer Singapore
,
Singapore
, pp.
109
121
.
17.
Helbig
,
R.
,
Günther
,
D.
,
Friedrichs
,
J.
,
Rößler
,
F.
,
Lasagni
,
A.
, and
Werner
,
C.
,
2016
, “
The Impact of Structure Dimensions on Initial Bacterial Adhesion
,”
Biomater. Sci.
,
4
(
7
), pp.
1074
1078
.10.1039/C6BM00078A
18.
Truong
,
V. K.
,
Webb
,
H. K.
,
Fadeeva
,
E.
,
Chichkov
,
B. N.
,
Wu
,
A. H. F.
,
Lamb
,
R.
,
Wang
,
J. Y.
,
Crawford
,
R. J.
, and
Ivanova
,
E. P.
,
2012
, “
Air-Directed Attachment of Coccoid Bacteria to the Surface of Superhydrophobic Lotus-Like Titanium
,”
Biofouling
,
28
(
6
), pp.
539
550
.10.1080/08927014.2012.694426
19.
Tripathy
,
A.
,
Sen
,
P.
,
Su
,
B.
, and
Briscoe
,
W. H.
,
2017
, “
Natural and Bioinspired Nanostructured Bactericidal Surfaces
,”
Adv. Colloid Interface Sci.
,
248
, pp.
85
104
.10.1016/j.cis.2017.07.030
20.
Coblas
,
D. G.
,
Fatu
,
A.
,
Maoui
,
A.
, and
Hajjam
,
M.
,
2015
, “
Manufacturing Textured Surfaces: State of Art and Recent Developments
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
1
), pp.
3
29
.10.1177/1350650114542242
21.
Ijaola
,
A. O.
,
Bamidele
,
E. A.
,
Akisin
,
C. J.
,
Bello
,
I. T.
,
Oyatobo
,
A. T.
,
Abdulkareem
,
A.
,
Farayibi
,
P. K.
, and
Asmatulu
,
E.
,
2020
, “
Wettability Transition for Laser Textured Surfaces: A Comprehensive Review
,”
Surf. Interfaces
,
21
, p.
100802
.10.1016/j.surfin.2020.100802
22.
Phillips
,
K. C.
,
Gandhi
,
H. H.
,
Mazur
,
E.
, and
Sundaram
,
S. K.
,
2015
, “
Ultrafast Laser Processing of Materials: A Review
,”
Adv. Opt. Photonics
,
7
(
4
), pp.
684
712
.10.1364/AOP.7.000684
23.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2013
, “
Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications
,”
Laser Photon. Rev.
,
7
(
3
), pp.
385
407
.10.1002/lpor.201200017
24.
Stratakis
,
E.
,
Bonse
,
J.
,
Heitz
,
J.
,
Siegel
,
J.
,
Tsibidis
,
G. D.
,
Skoulas
,
E.
,
Papadopoulos
,
A.
,
Mimidis
,
A.
,
Joel
,
A. C.
,
Comanns
,
P.
,
Krüger
,
J.
,
Florian
,
C.
,
Fuentes-Edfuf
,
Y.
,
Solis
,
J.
, and
Baumgartner
,
W.
,
2020
, “
Laser Engineering of Biomimetic Surfaces
,”
Mater. Sci. Eng. R Rep.
,
141
, p.
100562
.10.1016/j.mser.2020.100562
25.
Siddiquie
,
R. Y.
,
Gaddam
,
A.
,
Agrawal
,
A.
,
Dimov
,
S. S.
, and
Joshi
,
S. S.
,
2020
, “
Anti-Biofouling Properties of Femtosecond Laser-Induced Submicron Topographies on Elastomeric Surfaces
,”
Langmuir
,
36
(
19
), pp.
5349
5358
.10.1021/acs.langmuir.0c00753
26.
Cunha
,
A.
,
Elie
,
A.-M.
,
Plawinski
,
L.
,
Serro
,
A. P.
,
Botelho do Rego
,
A. M.
,
Almeida
,
A.
,
Urdaci
,
M. C.
,
Durrieu
,
M.-C.
, and
Vilar
,
R.
,
2016
, “
Femtosecond Laser Surface Texturing of Titanium as a Method to Reduce the Adhesion of Staphylococcus Aureus and Biofilm Formation
,”
Appl. Surf. Sci.
,
360
, pp.
485
493
.10.1016/j.apsusc.2015.10.102
27.
Epperlein
,
N.
,
Menzel
,
F.
,
Schwibbert
,
K.
,
Koter
,
R.
,
Bonse
,
J.
,
Sameith
,
J.
,
Krüger
,
J.
, and
Toepel
,
J.
,
2017
, “
Influence of Femtosecond Laser Produced Nanostructures on Biofilm Growth on Steel
,”
Appl. Surf. Sci.
,
418
, pp.
420
424
.10.1016/j.apsusc.2017.02.174
28.
Fadeeva
,
E.
,
Truong
,
V. K.
,
Stiesch
,
M.
,
Chichkov
,
B. N.
,
Crawford
,
R. J.
,
Wang
,
J.
, and
Ivanova
,
E. P.
,
2011
, “
Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation
,”
Langmuir
,
27
(
6
), pp.
3012
3019
.10.1021/la104607g
29.
Jalil
,
S. A.
,
Akram
,
M.
,
Bhat
,
J. A.
,
Hayes
,
J. J.
,
Singh
,
S. C.
,
ElKabbash
,
M.
, and
Guo
,
C.
,
2020
, “
Creating Superhydrophobic and Antibacterial Surfaces on Gold by Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
506
, p.
144952
.10.1016/j.apsusc.2019.144952
30.
Villapún
,
V. M.
,
Gomez
,
A. P.
,
Wei
,
W.
,
Dover
,
L. G.
,
Thompson
,
J. R.
,
Barthels
,
T.
,
Rodriguez
,
J.
,
Cox
,
S.
, and
González
,
S.
,
2020
, “
Development of Antibacterial Steel Surfaces Through Laser Texturing
,”
APL Mater.
,
8
(
9
), p.
091108
.10.1063/5.0017580
31.
Shaikh
,
S.
,
Kedia
,
S.
,
Singh
,
D.
,
Subramanian
,
M.
, and
Sinha
,
S.
,
2019
, “
Surface Texturing of Ti6Al4V Alloy Using Femtosecond Laser for Superior Antibacterial Performance
,”
J. Laser Appl.
,
31
(
2
), p.
022011
.10.2351/1.5081106
32.
Pan
,
Q.
,
Cao
,
Y.
,
Xue
,
W.
,
Zhu
,
D.
, and
Liu
,
W.
,
2019
, “
Picosecond Laser-Textured Stainless Steel Superhydrophobic Surface With an Antibacterial Adhesion Property
,”
Langmuir
,
35
(
35
), pp.
11414
11421
.10.1021/acs.langmuir.9b01333
33.
Scardino
,
A. J.
,
Guenther
,
J.
, and
de Nys
,
R.
,
2008
, “
Attachment Point Theory Revisited: The Fouling Response to a Microtextured Matrix
,”
Biofouling
,
24
(
1
), pp.
45
53
.10.1080/08927010701784391
34.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
35.
Lutey
,
A. H. A.
,
Gemini
,
L.
,
Romoli
,
L.
,
Lazzini
,
G.
,
Fuso
,
F.
,
Faucon
,
M.
, and
Kling
,
R.
,
2018
, “
Towards Laser-Textured Antibacterial Surfaces
,”
Sci. Rep.
,
8
(
1
), pp.
1
10
.10.1038/s41598-018-28454-2
36.
Siddiquie
,
R. Y.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2020
, “
Surface Alterations to Impart Antiviral Properties to Combat COVID-19 Transmission
,”
Trans. Indian Natl. Acad. Eng.
, 5, pp.
343
347
.10.1007/s41403-020-00096-9
37.
Ruiz‐Hitzky
,
E.
,
Darder
,
M.
,
Wicklein
,
B.
,
Ruiz‐Garcia
,
C.
,
Martín‐Sampedro
,
R.
,
Del Real
,
G.
, and
Aranda
,
P.
,
2020
, “
Nanotechnology Responses to COVID‐19
,”
Adv. Healthc. Mater.
,
9
(
19
), p.
2000979
.10.1002/adhm.202000979
38.
Sayes
,
C. M.
,
Gobin
,
A. M.
,
Ausman
,
K. D.
,
Mendez
,
J.
,
West
,
J. L.
, and
Colvin
,
V. L.
,
2005
, “
Nano-C60 Cytotoxicity is Due to Lipid Peroxidation
,”
Biomaterials
,
26
(
36
), pp.
7587
7595
.10.1016/j.biomaterials.2005.05.027
39.
Hasan
,
J.
,
Xu
,
Y.
,
Yarlagadda
,
T.
,
Schuetz
,
M.
,
Spann
,
K.
, and
Yarlagadda
,
P. K. D. V.
,
2020
, “
Antiviral and Antibacterial Nanostructured Surfaces With Excellent Mechanical Properties for Hospital Applications
,”
ACS Biomater. Sci. Eng.
,
6
(
6
), pp.
3608
3618
.10.1021/acsbiomaterials.0c00348
40.
Hasan
,
J.
,
Pyke
,
A.
,
Nair
,
N.
,
Yarlagadda
,
T.
,
Will
,
G.
,
Spann
,
K.
, and
Yarlagadda
,
P. K. D. V.
,
2020
, “
Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2
,”
ACS Biomater. Sci. Eng.
,
6
(
9
), pp.
4858
4861
.10.1021/acsbiomaterials.0c01091
41.
Alamri
,
S.
,
Fraggelakis
,
F.
,
Kunze
,
T.
,
Krupop
,
B.
,
Mincuzzi
,
G.
,
Kling
,
R.
, and
Lasagni
,
A. F.
,
2019
, “
On the Interplay of DLIP and LIPSS Upon Ultra-Short Laser Pulse Irradiation
,”
Materials (Basel
),
12
(
7
), p.
1018
.10.3390/ma12071018
42.
Fraggelakis
,
F.
,
Mincuzzi
,
G.
,
Manek-Hönninger
,
I.
,
Lopez
,
J.
, and
Kling
,
R.
,
2018
, “
Generation of Micro-and Nano-Morphologies on a Stainless Steel Surface Irradiated With 257 Nm Femtosecond Laser Pulses
,”
RSC Adv.
,
8
(
29
), pp.
16082
16087
.10.1039/C8RA01774C
43.
Bonse
,
J.
,
Höhm
,
S.
,
Koter
,
R.
,
Hartelt
,
M.
,
Spaltmann
,
D.
,
Pentzien
,
S.
,
Rosenfeld
,
A.
, and
Krüger
,
J.
,
2016
, “
Tribological Performance of Sub-100-Nm Femtosecond Laser-Induced Periodic Surface Structures on Titanium
,”
Appl. Surf. Sci.
,
374
, pp.
190
196
.10.1016/j.apsusc.2015.11.019
44.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2007
, “
Femtosecond Laser Structuring of Titanium Implants
,”
Appl. Surf. Sci.
,
253
(
17
), pp.
7272
7280
.10.1016/j.apsusc.2007.03.006
45.
Peter
,
A.
,
Lutey
,
A. H. A.
,
Faas
,
S.
,
Romoli
,
L.
,
Onuseit
,
V.
, and
Graf
,
T.
,
2020
, “
Direct Laser Interference Patterning of Stainless Steel by Ultrashort Pulses for Antibacterial Surfaces
,”
Opt. Laser Technol.
,
123
, p.
105954
.10.1016/j.optlastec.2019.105954
46.
Müller
,
D. W.
,
Fox
,
T.
,
Grützmacher
,
P. G.
,
Suarez
,
S.
, and
Mücklich
,
F.
,
2020
, “
Applying Ultrashort Pulsed Direct Laser Interference Patterning for Functional Surfaces
,”
Sci. Rep.
,
10
(
1
), pp.
1
14
.
47.
Trucchi
,
D. M.
,
Bellucci
,
A.
,
Girolami
,
M.
,
Mastellone
,
M.
, and
Orlando
,
S.
,
2017
, “
Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses
,”
Coatings
,
7
(
11
), p.
185
.10.3390/coatings7110185
48.
Bonse
,
J.
,
Krüger
,
J.
,
Höhm
,
S.
, and
Rosenfeld
,
A.
,
2012
, “
Femtosecond Laser-Induced Periodic Surface Structures
,”
J. Laser Appl.
,
24
(
4
), p.
42006
.10.2351/1.4712658
49.
Fraggelakis
,
F.
,
Mincuzzi
,
G.
,
Lopez
,
J.
,
Manek-Hönninger
,
I.
, and
Kling
,
R.
,
2019
, “
Controlling 2D Laser Nano Structuring Over Large Area With Double Femtosecond Pulses
,”
Appl. Surf. Sci.
,
470
, pp.
677
686
.10.1016/j.apsusc.2018.11.106
50.
Jalil
,
S. A.
,
Yang
,
J.
,
Elkabbash
,
M.
,
Cong
,
C.
, and
Guo
,
C.
,
2019
, “
Formation of Controllable 1D and 2D Periodic Surface Structures on Cobalt by Femtosecond Double Pulse Laser Irradiation
,”
Appl. Phys. Lett.
,
115
(
3
), p.
031601
.10.1063/1.5103216
51.
Ahmmed
,
K. M.
,
Grambow
,
C.
, and
Kietzig
,
A.-M.
,
2014
, “
Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining
,”
Micromachines
,
5
(
4
), pp.
1219
1253
.10.3390/mi5041219
52.
Luo
,
X.
,
Yao
,
S.
,
Zhang
,
H.
,
Cai
,
M.
,
Liu
,
W.
,
Pan
,
R.
,
Chen
,
C.
,
Wang
,
X.
,
Wang
,
L.
, and
Zhong
,
M.
,
2020
, “
Biocompatible Nano-Ripples Structured Surfaces Induced by Femtosecond Laser to Rebel Bacterial Colonization and Biofilm Formation
,”
Opt. Laser Technol.
,
124
, p.
105973
.10.1016/j.optlastec.2019.105973
53.
Arroyo
,
J. M.
,
Diniz
,
A. E.
, and
de Lima
,
M. S. F.
,
2010
, “
Cemented Carbide Surface Modifications Using Laser Treatment and Its Effects on Hard Coating Adhesion
,”
Surf. Coat. Technol.
,
204
(
15
), pp.
2410
2416
.10.1016/j.surfcoat.2010.01.009
54.
Kromer
,
R.
,
Costil
,
S.
,
Verdy
,
C.
,
Gojon
,
S.
, and
Liao
,
H.
,
2018
, “
Laser Surface Texturing to Enhance Adhesion Bond Strength of Spray Coatings—Cold Spraying, Wire-Arc Spraying, and Atmospheric Plasma Spraying
,”
Surf. Coat. Technol.
,
352
, pp.
642
653
.10.1016/j.surfcoat.2017.05.007
You do not currently have access to this content.