Abstract

Core–sheath electrospinning is a rapid microfabrication process for creating multilayer polymer microfibers. This paper presents a process based on core–sheath electrospinning to fabricate poly(L-lactic acid) (PLLA) microtubes with nanopores on the tube wall. The morphology of the microtubes mimics human fenestrated capillary vessels. This study investigates the effects of the viscosities of the core and the sheath solutions on the microtube outer diameter and the nanopore size. The core solution shows a dominating influence on the microtube diameter. At the same core solution viscosity level, the microtube diameter is negatively correlated to the core-to-sheath viscosity ratio. The pore size is positively correlated to the microtube diameter. Understanding the effects of solution viscosity on microtube morphology is the prerequisite for process control and microtube product development for future biomedical applications.

References:

1.
Sill
,
T. J.
, and
Von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.10.1016/j.biomaterials.2008.01.011
2.
Hu
,
X.
,
Liu
,
S.
,
Zhou
,
G.
,
Huang
,
Y.
,
Xie
,
Z.
, and
Jing
,
X.
,
2014
, “
Electrospinning of Polymeric Nanofibers for Drug Delivery Applications
,”
J. Controlled Release
,
185
, pp.
12
21
.10.1016/j.jconrel.2014.04.018
3.
Zeng
,
J.
,
Xu
,
X.
,
Chen
,
X.
,
Liang
,
Q.
,
Bian
,
X.
,
Yang
,
L.
, and
Jing
,
X.
,
2003
, “
Biodegradable Electrospun Fibers for Drug Delivery
,”
J. Controlled Release
,
92
(
3
), pp.
227
231
.10.1016/S0168-3659(03)00372-9
4.
Kenawy
,
E.-R.
,
Abdel-Hay
,
F. I.
,
El-Newehy
,
M. H.
, and
Wnek
,
G. E.
,
2009
, “
Processing of Polymer Nanofibers Through Electrospinning as Drug Delivery Systems
,”
Nanomaterials: Risks and Benefits
,
Springer
,
Dordrecht, The Netherlands
, pp.
247
263
.
5.
Wang
,
B.
,
Wang
,
Y.
,
Yin
,
T.
, and
Yu
,
Q.
,
2010
, “
Applications of Electrospinning Technique in Drug Delivery
,”
Chem. Eng. Commun.
,
197
(
10
), pp.
1315
1338
.10.1080/00986441003625997
6.
Yang
,
Y.
,
Xia
,
T.
,
Zhi
,
W.
,
Wei
,
L.
,
Weng
,
J.
,
Zhang
,
C.
, and
Li
,
X.
,
2011
, “
Promotion of Skin Regeneration in Diabetic Rats by Electrospun Core-Sheath Fibers Loaded With Basic Fibroblast Growth Factor
,”
Biomaterials
,
32
(
18
), pp.
4243
4254
.10.1016/j.biomaterials.2011.02.042
7.
Mickova
,
A.
,
Buzgo
,
M.
,
Benada
,
O.
,
Rampichova
,
M.
,
Fisar
,
Z.
,
Filova
,
E.
,
Tesarova
,
M.
,
Lukas
,
D.
, and
Amler
,
E.
,
2012
, “
Core/Shell Nanofibers With Embedded Liposomes as a Drug Delivery System
,”
Biomacromolecules
,
13
(
4
), pp.
952
962
.10.1021/bm2018118
8.
Li
,
J.-J.
,
Yang
,
Y.-Y.
,
Yu
,
D.-G.
,
Du
,
Q.
, and
Yang
,
X.-L.
,
2018
, “
Fast Dissolving Drug Delivery Membrane Based on the Ultra-Thin Shell of Electrospun Core-Shell Nanofibers
,”
Eur. J. Pharm. Sci.
,
122
, pp.
195
204
.10.1016/j.ejps.2018.07.002
9.
Shekh
,
M. I.
,
Patel
,
K. P.
, and
Patel
,
R. M.
,
2018
, “
Electrospun ZnO Nanoparticles Doped Core–Sheath Nanofibers: Characterization and Antimicrobial Properties
,”
J. Polym. Environ.
,
26
(
12
), pp.
4376
4387
.10.1007/s10924-018-1310-8
10.
Zhou
,
Y.
,
Sooriyaarachchi
,
D.
, and
Tan
,
G. Z.
,
2021
, “
Fabrication of Nanopores Polylactic Acid Microtubes by Core-Sheath Electrospinning for Capillary Vascularization
,”
Biomimetics
,
6
(
1
), p.
15
.10.3390/biomimetics6010015
11.
Zhou
,
Y.
, and
Tan
,
G. Z.
,
2020
, “
Core–Sheath Wet Electrospinning of Nanoporous Polycaprolactone Microtubes to Mimic Fenestrated Capillaries
,”
Macromol. Mater. Eng.
,
305
(
7
), p.
2000180
.10.1002/mame.202000180
12.
Mahalingam
,
S.
,
Homer-Vanniasinkam
,
S.
, and
Edirisinghe
,
M.
,
2019
, “
Novel Pressurised Gyration Device for Making Core-Sheath Polymer Fibres
,”
Mater. Des.
,
178
, p.
107846
.10.1016/j.matdes.2019.107846
13.
Yu
,
E.
,
Mi
,
H.‐Y.
,
Zhang
,
J.
,
Thomson
,
J. A.
, and
Turng
,
L.‐S.
,
2018
, “
Development of Biomimetic Thermoplastic Polyurethane/Fibroin Small‐Diameter Vascular Grafts Via a Novel Electrospinning Approach
,”
J. Biomed. Mater. Res. Part A
,
106
(
4
), pp.
985
996
.10.1002/jbm.a.36297
14.
He
,
S.
,
Xia
,
T.
,
Wang
,
H.
,
Wei
,
L.
,
Luo
,
X.
, and
Li
,
X.
,
2012
, “
Multiple Release of Polyplexes of Plasmids VEGF and bFGF From Electrospun Fibrous Scaffolds Towards Regeneration of Mature Blood Vessels
,”
Acta Biomater.
,
8
(
7
), pp.
2659
2669
.10.1016/j.actbio.2012.03.044
15.
Nezarati
,
R. M.
,
Eifert
,
M. B.
, and
Cosgriff-Hernandez
,
E.
,
2013
, “
Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology
,”
Tissue Eng. Part C Methods
,
19
(
10
), pp.
810
819
.10.1089/ten.tec.2012.0671
16.
Díaz
,
J. E.
,
Barrero
,
A.
,
Márquez
,
M.
, and
Loscertales
,
I. G.
,
2006
, “
Controlled Encapsulation of Hydrophobic Liquids in Hydrophilic Polymer Nanofibers by co‐Electrospinning
,”
Adv. Funct. Mater.
,
16
(
16
), pp.
2110
2116
.10.1002/adfm.200600204
17.
Tiwari
,
S. K.
, and
Venkatraman
,
S. S.
,
2012
, “
Importance of Viscosity Parameters in Electrospinning: Of Monolithic and Core–Shell Fibers
,”
Mater. Sci. Eng. C
,
32
(
5
), pp.
1037
1042
.10.1016/j.msec.2012.02.019
18.
Beachley
,
V.
, and
Wen
,
X.
,
2009
, “
Effect of Electrospinning Parameters on the Nanofiber Diameter and Length
,”
Mater. Sci. Eng. C
,
29
(
3
), pp.
663
668
.10.1016/j.msec.2008.10.037
19.
Dayal
,
P.
,
Liu
,
J.
,
Kumar
,
S.
, and
Kyu
,
T.
,
2007
, “
Experimental and Theoretical Investigations of Porous Structure Formation in Electrospun Fibers
,”
Macromolecules
,
40
(
21
), pp.
7689
7694
.10.1021/ma071418l
20.
Soliman
,
S.
,
Sant
,
S.
,
Nichol
,
J. W.
,
Khabiry
,
M.
,
Traversa
,
E.
, and
Khademhosseini
,
A.
,
2011
, “
Controlling the Porosity of Fibrous Scaffolds by Modulating the Fiber Diameter and Packing Density
,”
J. Biomed. Mater. Res. Part A
,
96A
(
3
), pp.
566
574
.10.1002/jbm.a.33010
You do not currently have access to this content.