Abstract

Silicon carbide (SiC) is an important material in many industrial applications. However, due to the hardness and brittleness nature, achieving ultraprecision machining of SiC is still challenging. In recent years, function surface with microstructures has been introduced in cutting tool to suppress wear process. But the wear mechanism of the structured tool has not been revealed completely. Therefore, in present research, molecular dynamic simulations were conducted to investigate the cutting performance of the microstructure on the nanoscale cutting process of 3 C-SiC. The simulation results showed that the dislocation propagation in workpiece can be suppressed with a structured tool. The microstructures have a significant influence on the stress distribution in the workpiece subsurface. Furthermore, the abrasive wear of the structured tool is obvious smaller since the edges of the tool became blunt and the contact face between tool and workpiece changed to the close-packed plane of diamond. Moreover, the amorphization of the structured tool is effectively suppressed. This study contributes to the understanding of the material behavior involved in the ultraprecision cutting of SiC.

References

1.
Dzurak
,
A.
,
2011
, “
Quantum Computing: Diamond and Silicon Converge
,”
Nature
,
479
(
7371
), pp.
47
48
.10.1038/479047a
2.
Shore
,
P.
,
Cunningham
,
C.
,
DeBra
,
D.
,
Evans
,
C.
,
Hough
,
J.
,
Gilmozzi
,
R.
,
Kunzmann
,
H.
,
Morantz
,
P.
, and
Tonnellier
,
X.
,
2010
, “
Precision Engineering for Astronomy and Gravity Science
,”
CIRP Ann.
,
59
(
2
), pp.
694
716
.10.1016/j.cirp.2010.05.003
3.
Fang
,
F. Z.
,
Wu
,
H.
, and
Liu
,
Y. C.
,
2005
, “
Modelling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1681
1686
.10.1016/j.ijmachtools.2005.03.010
4.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
75
80
.10.1016/j.ijmachtools.2006.02.016
5.
Fang
,
F. Z.
,
Wu
,
H.
,
Zhou
,
W.
, and
Hu
,
X. T.
,
2007
, “
A Study on Mechanism of Nano-Cutting Single Crystal Silicon
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
407
410
.10.1016/j.jmatprotec.2006.12.007
6.
Yan
,
J.
,
Zhang
,
Z.
, and
Kuriyagawa
,
T.
,
2009
, “
Mechanism for Material Removal in Diamond Turning of Reaction-Bonded Silicon Carbide
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
366
374
.10.1016/j.ijmachtools.2008.12.007
7.
Jasinevicius
,
R. G.
,
Duduch
,
J. G.
,
Montanari
,
L.
, and
Pizani
,
P. S.
,
2012
, “
Dependence of Brittle-to-Ductile Transition on Crystallographic Direction in Diamond Turning of Single-Crystal Silicon
,”
J. Eng. Manuf.
,
226
(
3
), pp.
445
458
.10.1177/0954405411421108
8.
Ravindra
,
D.
,
Ghantasala
,
M. K.
, and
Patten
,
J.
,
2012
, “
Ductile Mode Material Removal and High-Pressure Phase Transformation in Silicon During Micro-Laser Assisted Machining
,”
Precis. Eng.
,
36
(
2
), pp.
364
367
.10.1016/j.precisioneng.2011.12.003
9.
Goel
,
S.
,
Luo
,
X.
,
Comley
,
P.
,
Reuben
,
R. L.
, and
Cox
,
A.
,
2013
, “
Brittle–Ductile Transition During Diamond Turning of Single Crystal Silicon Carbide
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
15
21
.10.1016/j.ijmachtools.2012.09.001
10.
Goel
,
S.
,
Luo
,
X.
,
Agrawal
,
A.
, and
Reuben
,
R. L.
,
2015
, “
Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
131
164
.10.1016/j.ijmachtools.2014.09.013
11.
Kim
,
W. K.
, and
Kim
,
B. H.
,
2017
, “
A Molecular Dynamics Study on Atomistic Mechanisms of Nano-Scale Cutting Process of Sapphire
,”
J. Mech. Sci. Technol.
,
31
(
9
), pp.
4353
4362
.10.1007/s12206-017-0834-5
12.
Lin
,
Y.-C.
, and
Shiu
,
Y.-C.
,
2017
, “
Effect of Crystallographic Orientation on Single Crystal Copper Nanogrooving Behaviors by MD Method
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3207
3215
.10.1007/s00170-016-9282-0
13.
AlMotasem
,
A. T.
,
Bergström
,
J.
,
Gåård
,
A.
,
Krakhmalev
,
P.
, and
Holleboom
,
L. J.
,
2017
, “
Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics
,”
Tribol. Lett.
,
65
(
3
), p. 101.10.1007/s11249-017-0876-y
14.
AlMotasem
,
A. T.
,
Bergström
,
J.
,
Gåård
,
A.
,
Krakhmalev
,
P.
, and
Holleboom
,
L. J.
,
2017
, “
Tool Microstructure Impact on the Wear Behavior of Ferrite Iron During Nanoscratching: An Atomic Level Simulation
,”
Wear
,
370–371
, pp.
39
45
.10.1016/j.wear.2016.11.008
15.
Zhang
,
S. J.
,
To
,
S.
, and
Zhang
,
G. Q.
,
2017
, “
Diamond Tool Wear in Ultra-Precision Machining
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
613
641
.10.1007/s00170-016-8751-9
16.
Goel
,
S.
,
Luo
,
X.
, and
Reuben
,
R. L.
,
2012
, “
Molecular Dynamics Simulation Model for the Quantitative Assessment of Tool Wear During Single Point Diamond Turning of Cubic Silicon Carbide
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
402
408
.10.1016/j.commatsci.2011.07.052
17.
Dai
,
H.
,
Chen
,
G.
,
Li
,
S.
,
Fang
,
Q.
, and
Hu
,
B.
,
2017
, “
Influence of Laser Nanostructured Diamond Tools on the Cutting Behavior of Silicon by Molecular Dynamics Simulation
,”
RSC Adv.
,
7
(
25
), pp.
15596
15612
.10.1039/C6RA27070K
18.
Fung
,
K. Y.
,
Tang
,
C. Y.
, and
Cheung
,
C. F.
,
2017
, “
Molecular Dynamics Analysis of the Effect of Surface Flaws of Diamond Tools on Tool Wear in Nanometric Cutting
,”
Comput. Mater. Sci.
,
133
, pp.
60
70
.10.1016/j.commatsci.2017.03.006
19.
Tong
,
Z.
,
Liang
,
Y.
,
Jiang
,
X.
, and
Luo
,
X.
,
2014
, “
An Atomistic Investigation on the Mechanism of Machining Nanostructures When Using Single Tip and Multi-Tip Diamond Tools
,”
Appl. Surf. Sci.
,
290
, pp.
458
465
.10.1016/j.apsusc.2013.11.113
20.
Dai
,
H.
,
Chen
,
G.
,
Zhou
,
C.
,
Fang
,
Q.
, and
Fei
,
X.
,
2017
, “
A Numerical Study of Ultraprecision Machining of Monocrystalline Silicon With Laser Nano-Structured Diamond Tools by Atomistic Simulation
,”
Appl. Surf. Sci.
,
393
, pp.
405
416
.10.1016/j.apsusc.2016.10.014
21.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Computational Physics
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
22.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–the Open Visualization Tool, Modelling and Simulation In
,”
Mater. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
23.
Erhart
,
P.
, and
Albe
,
K.
,
2005
, “
Analytical Potential for Atomistic Simulations of Silicon, Carbon, and Silicon Carbide
,”
Phys. Rev. B
,
71
(
3
), p. 035211.10.1103/PhysRevB.71.035211
24.
Meng
,
B.
,
Yuan
,
D.
, and
Xu
,
S.
,
2019
, “
Study on Strain Rate and Heat Effect on the Removal Mechanism of SiC During Nano-Scratching Process by Molecular Dynamics Simulation
,”
Int. J. Mech. Sci.
,
151
, pp.
724
732
.10.1016/j.ijmecsci.2018.12.022
25.
Goel
,
S.
,
Kovalchenko
,
A.
,
Stukowski
,
A.
, and
Cross
,
G.
,
2016
, “
Influence of Microstructure on the Cutting Behaviour of Silicon
,”
Acta Mater.
,
105
, pp.
464
478
.10.1016/j.actamat.2015.11.046
26.
Chavoshi
,
S. Z.
, and
Luo
,
X.
,
2016
, “
An Atomistic Simulation Investigation on Chip Related Phenomena in Nanometric Cutting of Single Crystal Silicon at Elevated Temperatures
,”
Comput. Mater. Sci.
,
113
, pp.
1
10
.10.1016/j.commatsci.2015.11.027
27.
Chavoshi
,
S. Z.
,
Goel
,
S.
, and
Luo
,
X.
,
2016
, “
Influence of Temperature on the Anisotropic Cutting Behaviour of Single Crystal Silicon: A Molecular Dynamics Simulation Investigation
,”
J. Manuf. Processes
,
23
, pp.
201
210
.10.1016/j.jmapro.2016.06.009
28.
Goel
,
S.
,
Haque Faisal
,
N.
,
Luo
,
X.
,
Yan
,
J.
, and
Agrawal
,
A.
,
2014
, “
Nanoindentation of Polysilicon and Single Crystal Silicon: Molecular Dynamics Simulation and Experimental Validation
,”
J. Phys. D: Appl. Phys.
,
47
(
27
), p.
275304
.10.1088/0022-3727/47/27/275304
29.
Zhu
,
B.
,
Zhao
,
D.
,
Zhao
,
H.
,
Guan
,
J.
,
Hou
,
P.
,
Wang
,
S.
, and
Qian
,
L.
,
2017
, “
A Study on the Surface Quality and Brittle–Ductile Transition During the Elliptical Vibration-Assisted Nanocutting Process on Monocrystalline Silicon Via Molecular Dynamic Simulations
,”
RSC Adv.
,
7
(
7
), pp.
4179
4189
.10.1039/C6RA25426H
30.
Chavoshi
,
S. Z.
,
Goel
,
S.
, and
Luo
,
X.
,
2016
, “
Molecular Dynamics Simulation Investigation on the Plastic Flow Behaviour of Silicon During Nanometric Cutting, Modelling and Simulation in
,”
Mater. Sci. Eng.
,
24
(
1
), p.
015002
.10.1088/0965-0393/24/1/015002
31.
Liu
,
C.
,
Chen
,
X.
,
Zhang
,
J.
,
Zhang
,
J.
,
Chu
,
J.
,
Xiao
,
J.
, and
Xu
,
J.
,
2020
, “
Molecular Dynamic Simulation of Tool Groove Wear in Nanoscale Cutting of Silicon
,”
AIP Adv.
,
10
(
1
), p.
015327
.10.1063/1.5133855
32.
Stukowski
,
A.
,
Bulatov
,
V. V.
, and
Arsenlis
,
A.
,
2012
, “
Automated Identification and Indexing of Dislocations in Crystal Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
8
), p.
085007
.10.1088/0965-0393/20/8/085007
33.
Wang
,
J.
,
Fang
,
F.
, and
Zhang
,
X.
,
2017
, “
Nanometric Cutting of Silicon With an Amorphous-Crystalline Layered Structure: A Molecular Dynamics Study
,”
Nanoscale Res Lett
,
12
(
1
), p.
41
.10.1186/s11671-017-1829-y
34.
Pastewka
,
L.
,
Moser
,
S.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2011
, “
Anisotropic Mechanical Amorphization Drives Wear in Diamond
,”
Nat Mater
,
10
(
1
), pp.
34
38
.10.1038/nmat2902
You do not currently have access to this content.