Abstract

To estimate the field-emission current density of a Ge/Si heterosystem, 20-nm germanium/silicon (100) samples were grown by molecular beam epitaxy. The surface of one sample was covered with a layer of antimony, which was removed in vacuum prior to the samples being measured. A second sample of Ge/Si was exposed to room air in the absence of antimony. The current–voltage characteristics of both samples obtained by scanning tunneling microscopy (STM) were discovered to be in agreement with classical Fowler–Nordheim theory. The density of emission current from Ge nanocrystal exceeds the density of emission current from the wetting layer of Ge/Si. The density of emission current of pure Ge nanocrystal is less than the density of emission current of Ge nanocrystal with adsorption layers.

Reference

1.
Murphy
,
E. L.
, and
Good
,
R. H.
, Jr.
,
1956
, “
Thermionic Emission, Field Emission, and the Transition Region
,”
Phys. Rev.
,
102
(
6
), pp.
1464
1473
.10.1103/PhysRev.102.1464
2.
Dyke
,
W. P.
, and
Dolan
,
W. W.
,
1956
, “
Field Emission
,”
Adv. Electron. Electron Phys.
,
8
, p.
89
.10.1016/S0065-2539(08)61226-3
3.
Mahan
,
G. D.
,
1970
, “
Theory of Photoemission in Simple Metals
,”
Phys. Rev. B
,
2
(
11
), pp.
4334
4350
.10.1103/PhysRevB.2.4334
4.
Teo
,
K. B. K.
,
Minoux
,
E.
,
Hudanski
,
L.
,
Peauger
,
F.
,
Schnell
,
J.-P.
,
Gangloff
,
L.
,
Legagneux
,
P.
,
Dieumegard
,
D.
,
Amaratunga
,
G. A. J.
, and
Milne
,
W. I.
,
2005
, “
Carbon Nanotubes as Cold Cathodes
,”
Nature
,
437
(
7061
), pp.
968
968
.10.1038/437968a
5.
Velasquez-Garcia
,
L. F.
,
Akinwande
,
A. I.
, and
Martinez-Sanchez
,
M.
,
2006
, “
A Planar Array of Micro-Fabricated Electrospray Emitters for Thruster Applications
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1272
1280
.10.1109/JMEMS.2006.879710
6.
Fomani
,
A. A.
,
I Akinwande
,
A.
, and
Velásquez-García
,
L. F.
,
2013
, “
Resilient, Nanostructured, High-Current, and Low-Voltage Neutralizers for Electric Propulsion of Small Spacecraft in Low Earth Orbit
,”
J. Phys.: Conf. Ser.
,
476
, p.
012014
.10.1088/1742-6596/476/1/012014
7.
den Engelsen
,
D.
,
2008
, “
The Temptation of Field Emission Displays
,”
Phys. Procedia
,
1
(
1
), pp.
355
365
.10.1016/j.phpro.2008.07.115
8.
Giubileo
,
F.
,
Bartolomeo
,
A. D.
,
Iemmo
,
L.
,
Luongo
,
G.
, and
Urban
,
F.
,
2018
, “
Field Emission From Carbon Nanostructures
,”
Appl. Sci.
,
8
(
4
), p.
526
.10.3390/app8040526
9.
Elinson
,
M. I.
, and
Vasilev
,
G. F.
,
1958
,
Field Emission
,
Fizmatgiz
,
Moscow, Russia
.
10.
M. I.
Elinson
, ed.,
1974
,
Non-Heated Cathodes
, Sovetskoe Radio,
Moscow, Russia
.
11.
Fowler
,
R. H.
, and
Nordheim
,
L.
,
1928
, “
Electron Emission in Intense Electric Fields
,”
Proc. R. Soc. London, Ser. A
,
119
, p.
173
.http://www.jstor.org/stable/95023
12.
Dobretsov
,
L. N.
, and
Gomoyunova
,
M. V.
,
1966
,
Emission Electronics
,
Nauka
,
Moscow, Russia
.
13.
Modinos
,
A.
,
1984
,
Field, Thermionic, and Secondary Electron Emission Spectroscopy
,
Plenum Press
,
New York
.
14.
Fischer
,
R.
, and
Neumann
,
H.
,
1966
, “
Feldemission Aus Halbleitern
,”
Fortschr. Phys.
,
14
(
1–12
), pp.
603
692
.10.1002/prop.19660140115
15.
Dadykin
,
A. A.
,
Kozyrev
,
Y. N.
, and
Naumovets
,
A. G.
,
2002
, “
Field Electron Emission From Ge-Si Nanostructures With Quantum Dots
,”
JETP Lett.
,
76
(
7
), pp.
472
474
.10.1134/1.1528705
16.
Kolosko
,
A. G.
,
Popov
,
E. O.
,
Filippov
,
S. V.
, and
Romanov
,
P. A.
,
2015
, “
Statistical Dispersion of Nanocomposite Emission Parameters
,”
J. Vac. Sci. Technol. B
,
33
(
3
), p.
03C104
.10.1116/1.4904738
You do not currently have access to this content.