Abstract

Electrohydrodynamic (EHD) printing is an alternative method to fabricate high-resolution micro- and nanostructures with high efficiency, low cost, and low pollution. Numerical simulation is an effective approach to systematically investigate the formation process of EHD jet. However, there are a few articles performing this work. In this study, a finite element model was established. The jet formation process and jetting modes were analyzed. The influence of applied voltage and printing distance on the maximum electric field near the nozzle tip was investigated. The effect of flow rate on the jet diameters was studied. Comparison between numerical and experimental results demonstrated that the proposed simulation model had a high potential for EHD jet analysis. According to the optimized printing conditions (printing distance of 200–300 μm, applied voltage of ∼1100 V, and flow rate of 0.1–0.3 ml/h), stable EHD jet can generate and polyvinyl pyrrolidone (PVP) lines with minimum line-width of 0.9 μm can be printed onto the glass slide.

References

1.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.10.1038/nmat1974
2.
Kawase
,
T.
,
Sirringhaus
,
H.
,
Friend
,
R. H.
, and
Shimoda
,
T.
,
2000
, “
All-Polymer Thin Film Transistors Fabricated by High-Resolution Ink-Jet Printing
,”
International Electron Devices Meeting
, San Francisco, CA, Dec. 10–13, p. 6887336.10.1109/IEDM.2000.904397
3.
Zeleny
,
J.
,
1917
, “
Instability of Electrified Liquid Surfaces
,”
Phys. Rev.
,
10
(
1
), pp.
1
6
.10.1103/PhysRev.10.1
4.
Pikul
,
J. H.
,
Graf
,
P.
,
Mishra
,
S.
,
Barton
,
K.
,
Kim
,
Y.
-K.,
Rogers
,
J. A.
,
Alleyne
,
A.
,
Ferreira
,
P. M.
, and
King
,
W. P.
,
2011
, “High Precision Electrohydrodynamic Printing of Polymer Onto Microcantilever Sensors,”
IEEE Sens. J.
,
11
(10), pp.
2246
2253
.10.1109/JSEN.2011.2127472
5.
Onses
,
M. S.
,
Song
,
C.
,
Williamson
,
L.
,
Sutanto
,
E.
,
Ferreira
,
P. M.
,
Alleyne
,
A. G.
,
Nealey
,
P. F.
,
Ahn
,
H.
, and
Rogers
,
J. A.
,
2013
, “
Hierarchical Patterns of Three-Dimensional Block-Copolymer Films Formed by Electrohydrodynamic Jet Printing and Self-Assembly
,”
Nat. Nanotechnol.
,
8
(
9
), pp.
667
675
.10.1038/nnano.2013.160
6.
Shigeta
,
K.
,
He
,
Y.
,
Sutanto
,
E.
,
Kang
,
S.
,
Le
,
A. P.
,
Nuzzo
,
R. G.
,
Alleyne
,
A. G.
,
Ferreira
,
P. M.
,
Lu
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Functional Protein Microarrays by Electrohydrodynamic Jet Printing
,”
Anal. Chem.
,
84
(
22
), pp.
10012
10018
.10.1021/ac302463p
7.
Zou
,
W.
,
Yu
,
H.
,
Zhou
,
P.
, and
Liu
,
L.
,
2019
, “
Tip-Assisted Electrohydrodynamic Jet Printing for High-Resolution Microdroplet Deposition
,”
Mater. Des.
,
166
, p.
107609
.10.1016/j.matdes.2019.107609
8.
Zhu
,
X.
,
Xu
,
Q.
,
Li
,
H.
,
Liu
,
M.
,
Li
,
Z.
,
Yang
,
K.
,
Zhao
,
J.
,
Qian
,
L.
,
Peng
,
Z.
,
Zhang
,
G.
,
Yang
,
J.
,
Wang
,
F.
,
Li
,
D.
, and
Lan
,
H.
,
2019
, “
Fabrication of High-Performance Silver Mesh for Transparent Glass Heaters Via Electric-Field-Driven Microscale 3D Printing and UV-Assisted Microtransfer
,”
Adv. Mater.
,
31
(
32
), p.
1902479
.10.1002/adma.201902479
9.
Park
,
Y.-G.
,
An
,
H. S.
,
Kim
,
J.-Y.
, and
Park
,
J.-U.
,
2019
, “
High-Resolution, Reconfigurable Printing of Liquid Metals With Three-Dimensional Structures
,”
Sci. Adv.
,
5
(
6
), p.
eaaw2844
.10.1126/sciadv.aaw2844
10.
Choi
,
H. K.
,
Park
,
J. U.
,
Park
,
O. O.
,
Ferreira
,
P. M.
,
Georgiadis
,
J. G.
, and
Rogers
,
J. A.
,
2008
, “
Scaling Laws for Jet Pulsations Associated With High-Resolution Electrohydrodynamic Printing
,”
Appl. Phys. Lett.
,
92
(
12
), p.
123109
.10.1063/1.2903700
11.
Lee
,
A.
,
Jin
,
H.
,
Dang
,
H. W.
,
Choi
,
K. H.
, and
Ahn
,
K. H.
,
2013
, “
Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing
,”
Langmuir
,
29
(
44
), pp.
13630
13639
.10.1021/la403111m
12.
Barton
,
K.
,
Mishra
,
S.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2011
, “
Control of High-Resolution Electrohydrodynamic Jet Printing
,”
Control Eng. Pract.
,
19
(
11
), pp.
1266
1273
.10.1016/j.conengprac.2011.05.009
13.
Lastow
,
O.
, and
Balachandran
,
W.
,
2006
, “
Numerical Simulation of Electrohydrodynamic (EHD) Atomization
,”
J. Electrost.
,
64
(
12
), pp.
850
859
.10.1016/j.elstat.2006.02.006
14.
Kim
,
S.-Y.
,
Kim
,
Y.
,
Park
,
J.
, and
Hwang
,
J.
,
2010
, “
Design and Evaluation of Single Nozzle With a Non-Conductive Tip for Reducing Applied Voltage and Pattern Width in Electrohydrodynamic Jet Printing (EHDP)
,”
J. Micromech. Microeng.
,
20
(
5
), p.
055009
.10.1088/0960-1317/20/5/055009
15.
Pan
,
Y.
, and
Zeng
,
L.
,
2019
, “
Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing
,”
Micromachines
,
10
(
2
), p.
94
.10.3390/mi10020094
16.
Lee
,
J.-S.
,
Kim
,
S.-Y.
,
Kim
,
Y.-J.
,
Park
,
J.
,
Kim
,
Y.
,
Hwang
,
J.
, and
Kim
,
Y.-J.
,
2008
, “
Design and Evaluation of a Silicon Based Multi-Nozzle for Addressable Jetting Using a Controlled Flow Rate in Electrohydrodynamic Jet Printing
,”
Appl. Phys. Lett.
,
93
(
24
), p.
243114
.10.1063/1.3049609
17.
Pannier
,
C. P.
,
Diagne
,
M.
,
Spiegel
,
I. A.
,
Hoelzle
,
D. J.
, and
Barton
,
K.
,
2017
, “
A Dynamical Model of Drop Spreading in Electrohydrodynamic Jet Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111008
.10.1115/1.4037436
18.
Singh
,
S. K.
, and
Subramanian
,
A.
,
2020
, “
Phase-Field Simulations of Electrohydrodynamic Jetting for Printing Nano-to-Microscopic Constructs
,”
RSC Adv.
,
10
(
42
), pp.
25022
25028
.10.1039/D0RA04214E
19.
Rahmat
,
A.
,
Koç
,
B.
, and
Yildiz
,
M.
,
2017
, “
A Systematic Study on Numerical Simulation of Electrified Jet Printing
,”
Addit. Manuf.
,
18
, pp.
15
21
.10.1016/j.addma.2017.08.004
20.
Rahmanpour
,
M.
,
Ebrahimi
,
R.
, and
Pourrajabian
,
A.
,
2017
, “
Numerical Simulation of Two-Phase Electrohydrodynamic of Stable Taylor Cone-Jet Using a Volume-of-Fluid Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
11
), pp.
4443
4453
.10.1007/s40430-017-0832-7
21.
Gañán-Calvo
,
A. M.
,
Dávila
,
J.
, and
Barrero
,
A.
,
1997
, “
Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws
,”
J. Aerosol Sci.
,
28
(
2
), pp.
249
275
.10.1016/S0021-8502(96)00433-8
22.
Kebarle
,
P.
, and
Verkerk
,
U. H.
,
2009
, “
Electrospray: From Ions in Solution to Ions in the Gas Phase, What we Know Now
,”
Mass Spectrom. Rev.
,
28
(
6
), pp.
898
917
.10.1002/mas.20247
23.
Han
,
Y.
, and
Dong
,
J.
,
2018
, “
Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges
,”
ASME J. Micro- Nano-Manuf.
,
6
(
4
), p.
040802
.10.1115/1.4041934
24.
Qu
,
X.
,
Li
,
J.
,
Yin
,
Z.
, and
Zou
,
H.
,
2019
, “
New Lithography Technique Based on Electrohydrodynamic Printing Platform
,”
Org. Electron.
,
71
), pp.
279
283
.10.1016/j.orgel.2019.05.013
25.
Gao
,
D.
,
Yao
,
D.
,
Leist
,
S. K.
,
Fei
,
Y.
, and
Zhou
,
J.
,
2018
, “
Mechanisms and Modeling of Electrohydrodynamic Phenomena
,”
Int. J. Bioprint.
,
5
(
1
), p.
166
.10.18063/ijb.v5i1.166
You do not currently have access to this content.