A novel hybrid heating method which combines the conventional electric-resistance specimen heating with microcoil heating of specimen ends to achieve uniform heating over the gauge length is presented. Resistive heating of a miniature specimen develops a parabolic temperature profile with lowest temperature at the grip ends because of the heat loss to the gripper. Coil heating at the specimen ends compensates for this heat loss resulting in uniform temperature distribution over the central segment of the specimen. Thermo-electric finite element simulations were carried out to analyze the transient and steady temperature distribution in miniature specimens followed by experimental validation.

References

1.
Lord
,
J. D.
,
Roebuck
,
B.
,
Morrell
,
R.
, and
Lube
,
T.
,
2010
, “
Aspects of Strain and Strength Measurement in Miniaturized Testing for Engineering Metals and Ceramics
,”
Mater. Sci. Technol.
,
26
(
2
), pp.
127
148
.
2.
Jaya
,
B. N.
, and
Alam
,
M. Z.
,
2013
, “
Small-Scale Mechanical Testing of Materials
,”
Curr. Sci.
,
105
(
8
), pp.
1073
1099
.
3.
Lucas
,
G. E.
,
1983
, “
The Development of Small Specimen Mechanical Tests Techniques
,”
J. Nucl. Mater.
,
117
, pp.
327
339
.
4.
Hyde
,
T. H.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2007
, “
Requirements for and Use of a Miniature Test Specimens to Provide Mechanical and Creep Properties of Materials: A Review
,”
Int. Mater. Rev.
,
52
(
4
), pp.
213
255
.
5.
Lucas
,
G. E.
,
1990
, “
Review of Small Specimen Test Techniques for Irradiation Testing
,”
Metall. Trans. A
,
21
(
5
), pp.
1105
1119
.
6.
Lucas
,
G. E.
,
Odette
,
G. R.
,
Matsui
,
H.
,
Moslang
,
A.
,
Spatig
,
P.
,
Rensman
,
J.
, and
Yamamoto
,
T.
,
2007
, “
The Role of Small Specimen Tests Technology in Fusion Materials Development
,”
J. Nucl. Mater.
,
367–370
(Part B), pp.
1549
1556
.
7.
Wakai
,
E.
,
Nogami
,
S.
,
Kasada
,
R.
,
Kimura
,
A.
,
Kurishita
,
H.
,
Saito
,
M.
,
Ito
,
Y.
,
Takada
,
F.
,
Nakamura
,
K.
,
Molla
,
J.
, and
Garin
,
P.
,
2011
, “
Small Specimen Test Technology and Methodology of IFMIF/EVEDA and the Further Subjects
,”
J. Nucl. Mater.
,
417
(1–3), pp.
1325
1330
.
8.
Razali
,
A. R.
, and
Qin
,
Y.
,
2013
, “
A Review on Micro-Manufacturing, Micro-Forming and Their Key Issues
,”
Procedia Eng.
,
53
, pp.
665
672
.
9.
Eichehueller
,
B.
,
2007
, “
Microforming at Elevated Temperature Forming and Material Behavior
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1
), pp.
119
124
.
10.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann.—Manuf. Technol.
,
50
(
2
), pp.
445
462
.
11.
Fu
,
M. W.
, and
Chan
,
W. L.
,
2014
,
Micro-Scales Products Developments Via Microforming
(Springer Series in Advanced Manufacturing),
Springer-Verlag
,
London
, pp.
9
41
.
12.
Czoboly
,
E.
,
Gillemot
,
F.
, and
Oszwald
,
F.
,
1998
, “
Small Specimen Testing Applied at Surveillance Extension
,”
Small Specimen Test Techniques
, ASTM, Philadelphia, PA, pp.
163
172
, Standard No. STP 1329.
13.
Hankin
,
G. L.
,
Toloczko
,
M. B.
,
Hamilton
,
M. L.
,
Garner
,
F. A.
, and
Faulkner
,
R. G.
,
1998
, “
Validation of the Shear Punch-Tensile Correlation Technique Using Irradiated Materials
,”
J. Nucl. Mater.
,
258–263
(
Part 2
), pp.
1651
1656
.
14.
Nedoushan
,
R. J.
,
Farzin
,
M.
, and
Banabic
,
D.
,
2014
, “
Simulation of Hot Forming Process: Using Cost Effective Micro-Structural Constitutive Models
,”
Int. J. Mech. Sci.
,
85
, pp.
196
204
.
15.
Haque
,
M. A.
, and
Saif
,
M. T.
,
2004
, “
Deformation Mechanisms in Free-Standing Nanoscale Thin Films: A Quantitative In Situ Transmission Electron Microscope Study
,”
PNAS
,
101
(
17
), pp.
6335
6340
.
16.
Ma
,
X.
, and
Shi
,
H.
,
2014
, “
In Situ SEM Studies of the Low Cycle Fatigue Behavior of DZ4 Superalloy at Elevated Temperature: Effect of Partial Recrystallization
,”
Int. J. Fatigue
,
61
, pp.
255
263
.
17.
Guo
,
E. Y.
,
Wang
,
M. Y.
,
Jing
,
T.
, and
Chawla
,
N.
,
2013
, “
Temperature-Dependent Mechanical Properties of an Austenitic–Ferritic Stainless Steel Studied by In Situ Tensile Loading in a Scanning Electron Microscope
,”
Mater. Sci. Eng. A
,
580
, pp.
159
168
.
18.
Petrenec
,
M.
,
Polák
,
J.
,
Šamořil
,
M.
,
Dluhoš
,
J.
, and
Obrtlík
,
K.
,
2014
, “
In-Situ Study of the Mechanisms of High Temperature Damage in Elastic-Plastic Cyclic Loading of Nickel Superalloy
,”
Adv. Mater. Res.
,
891–892
, pp.
530
535
.
19.
Petrenec
,
M.
,
Polák
,
J.
,
Šamořil
,
M.
,
Dluhoš
,
J.
, and
Obrtlík
,
K.
,
2014
, “
In-Situ High Temperature Low Cycle Fatigue Study of Surface Topography Evolution in Nickel Superalloy
,” 23rd International Conference on Metallurgy and Materials (METAL), Brno, Czech Republic, May 21–23.
20.
Callaghan
,
M. D.
,
Humphries
,
S. R.
,
Law
,
M.
,
Li
,
H.
, and
Yeung
,
W. Y.
,
2010
, “
Evaluation of High Temperature Fatigue Behavior of P22 by Miniature Specimen Testing
,”
Mater. Sci. Forum
,
638–642
, pp.
3937
3942
.
21.
Kohyama
,
A.
,
Sato
,
S.
, and
Hamada
,
K.
,
1993
, “
An Automated Tensile Machine for Small Specimens Heavily Neutron Irradiated in FFTF/MOTA
,”
Small Specimen Test Techniques Applied to Nuclear Reactor Vessels Thermal Annealing and Plant Life Extension
,
W. R.
Corwin
,
F. M.
Haggag
, and
W. L.
Server
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
356
367
.
22.
Hannula
,
S. P.
,
Wanagel
,
J.
, and
Li
,
C. Y.
,
1986
, “
A Miniaturized Mechanical Testing System for Small-Scale Specimen Testing
,”
The Use of Small-Scale Specimens for Testing Irradiated Material
,
W. R.
Corwin
and
G. E.
Lucas
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
233
251
.
23.
Quested
,
T. E.
,
2000
, “
Finite Element Analysis of Miniaturised Electro Thermo Mechanical Testing System
,” NPL Report CMMT (A) No. 291.
24.
Ho
,
C. Y.
, and
Chu
,
T. K.
,
1977
, “
Electric Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels
,” U.S. Defense Technical Information Center, Defense Logistics Agency, Alexandria, VA, CINDAS Report No. 45, pp. 5–30.
You do not currently have access to this content.