In this paper, fabrication and mechanical characterization of silicon oxycarbide (SiOC) microparts made from polycarbosilane (PCS) precursor is described. The developed fabrication technique is a combination of ultraviolet thick photoresist lithography and slip casting. The slips consisting of β-SiC nanoparticles and a PCS solution are cast into SU-8 photoresist micromold, fabricated on a porous tungsten carbide plate. The plate works as a filter for solid–liquid separation. The cast slips are fired at 1000 °C in N2 gas flow for an hour. During the firing, the SiOC body can be released from the mold because of SU-8 vaporization at 450 °C. By using the technique, we have successfully produced SiOC microgears with diameters ranging from 0.5 mm to 2 mm. To improve the mechanical reliability, the polymer infiltration and pyrolysis (PIP) process is carried out. The influence of the PIP process is evaluated by means of the nanoindentation test. The Young's modulus and hardness are increased with increasing PIP process cycles. From energy dispersive X-ray measurement results, it is found that their distributions are related to the amount of oxygen and the carbon-to-silicon ratio.

References

1.
Chang
,
K-S.
,
Tanaka
,
S.
, and
Esashi
,
M.
,
2003
, “
MEMS-Based Fuel Reformer With Suspended Membrane Structure
,”
IEEJ Trans. Sens. Micromach.
,
123
(
9
), pp.
346
350
.10.1541/ieejsmas.123.346
2.
Ehrich
,
F. F.
, and
Jacobson
,
S. A.
,
2003
, “
Development of High-Speed Gas Bearings for High-Power Density Microdevices
,”
ASME J. Eng. Gas Turbine Power
,
125
(
1
), pp.
141
148
.10.1115/1.1498273
3.
Jacobson
,
S. A.
, and
Epstein
,
A. H.
,
2003
, “
An Informal Survey of Power MEMS
,”
Proc. ISMME
, p.
K18
.
4.
Mitcheson
,
P. D.
,
Reilly
,
E. K.
,
Toh
,
T.
,
Wright
,
P. K.
, and
Yeatman
,
E. M.
,
2006
, “
Transduction Mechanisms and Power Density for MEMS Inertial Energy Scavengers
,”
Power MEMS '06
, pp.
275
278
.
5.
Kang
,
P.
,
Tanaka
,
S.
, and
Esashi
,
M.
,
2005
, “
Demonstration of a MEMS-Based Turbocharger on a Single Rotor
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
1076
1087
.10.1088/0960-1317/15/5/026
6.
Hanein
,
Y.
,
Pan
,
Y. V.
,
Ratner
,
B. D.
,
Denton
,
D. D.
, and
Bohringer
,
K. F.
,
2001
, “
Micromachining of Non-Fouling Coatings for Bio-MEMS Applications
,”
Sens. Actuators, B
,
81
(
1
), pp.
49
54
.10.1016/S0925-4005(01)00925-X
7.
Miki
,
N.
,
Teo
,
C. J.
,
Ho
,
L. C.
, and
Zhang
,
X.
,
2003
, “
Enhancement of Rotordynamic Performance of High-Speed Micro-Rotors for Power MEMS Applications by Precision Deep Reactive Ion Etching
,”
Sens. Actuators, A
,
104
(
3
), pp.
263
267
.10.1016/S0924-4247(03)00028-1
8.
Zhang
,
X.
,
Chen
,
K.-S.
, and
Spearing
,
S. M.
,
2003
, “
Thermo-Mechanical Behavior of Thick PECVD Oxide Films for Power MEMS Applications
,”
Sens. Actuators, A
,
103
(
1–2
), pp.
263
270
.10.1016/S0924-4247(02)00343-6
9.
Bhardwaj
,
J.
,
Ashraf
,
H.
, and
McQuarrie
,
A.
,
1997
, “
Dry Silicon Etching for MEMS
,”
Symposium on Microstructures and Microfabricated Systems
, pp.
4
9
.
10.
Petersen
,
K. E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.10.1109/PROC.1982.12331
11.
Stoldt
,
C. R.
,
Carraro
,
C.
,
Ashurst
,
W. R.
,
Gao
,
D.
,
Howe
,
R. T.
, and
Maboudian
,
R.
,
2002
, “
A Low-Temperature CVD Process for Silicon Carbide MEMS
,”
Sens. Actuators, A
,
97–98
(
1
), pp.
410
415
.10.1016/S0924-4247(01)00810-X
12.
Shah
,
S. R.
, and
Raj
,
R.
,
2002
, “
Mechanical Properties of a Fully Dense Polymer Derived Ceramic Made by a Novel Pressure Casting Process
,”
Acta Mater.
,
50
(
16
), pp.
4093
4103
.10.1016/S1359-6454(02)00206-9
13.
Ishida
,
Y.
,
Takahashi
,
T.
,
Okumura
,
H.
,
Sekigawa
,
T.
, and
Yoshida
,
S.
,
1999
, “
Elongated Shaped Si Island Formation on 3D-SiC by Chemical Vapor Deposition and Its Application to Antiphase Domain Observation
,”
Jpn. J. Appl. Phys.
,
38
(
6A
), pp.
3470
3474
.10.1143/JJAP.38.3470
14.
Maboudian
,
R.
,
Carraro
,
C.
,
Senesky
,
D. G.
, and
Roper
,
C.
,
2013
, “
Advances in Silicon Carbide Science and Technology at the Micro- and Nanoscales
,”
J. Vac. Sci. Technol. A
,
31
(
5
), p.
050805
.10.1116/1.4807902
15.
Senesky
,
D. G.
,
Jamshidi
,
B.
,
Cheng
,
K. B.
, and
Pisano
,
A. P.
,
2009
, “
Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review
,”
IEEE Sens. J.
,
9
(
11
), pp.
1472
1478
.10.1109/JSEN.2009.2026996
16.
Chen
,
T.
,
Dong
,
M.
,
Wang
,
J.
,
Zhang
,
L.
, and
Li
,
C.
,
2012
, “
Study on Properties of Silicon Oxycarbide Thin Films Prepared by RF Magnetron Sputtering
,”
2nd International Conference on Electronic and Mechanical Engineering and Information Technology, EMEIT-2012
, pp.
1233
1237
.
17.
Strachota
,
A.
,
Cerný
,
M.
,
Glogar
,
P.
,
Sucharda
,
Z.
,
Havelcová
,
M.
,
Chlup
,
Z.
,
Dlouhý
,
I.
, and
Kozák
,
V.
,
2011
, “
Preparation of Silicon Oxycarbide Composites Toughened by Inorganic Fibers via Pyrolysis of Precursor Siloxane Composites
,”
Acta Phys. Polon. A
,
120
(
2
), pp.
326
330
.
18.
Kleebe
,
H.-J.
, and
Blum
,
Y. D.
,
2008
, “
SiOC Ceramic With High Excess Free Carbon
,”
J. Eur. Ceram. Soc.
,
28
(
5
), pp.
1037
1042
.10.1016/j.jeurceramsoc.2007.09.024
19.
Toma
,
L.
,
Kleebe
,
H.-J.
,
Müller
,
M. M.
,
Janssen
,
E.
,
Riedel
,
R.
,
Melz
,
T.
, and
Hanselka
,
H.
,
2012
, “
Correlation Between Intrinsic Microstructure and Piezoresistivity in a SiOC Polymer-Derived Ceramic
,”
J. Am. Ceram. Soc.
,
95
(
3
), pp.
1056
1061
.10.1111/j.1551-2916.2011.04944.x
20.
Narisawa
,
M.
,
Sumimoto
,
R.
, and
Kita
,
K.
,
2010
, “
Evaluation of Oxidation Resistance of Thin Continuous Silicon Oxycarbide Fiber Derived From Silicone Resin With Low Carbon Content
,”
J. Mater. Sci.
,
45
, pp.
5642
5648
.10.1007/s10853-010-4629-7
21.
Tanaka
,
S.
,
Sugimoto
,
S.
,
Li
,
J.-F.
,
Watanabe
,
R.
, and
Esashi
,
M.
,
2001
, “
Silicon Carbide Micro-Reaction-Sintering Using Micromachined Silicon Molds
,”
J. Microelectromech. Syst.
,
10
(
1
), pp.
55
61
.10.1109/84.911092
22.
Ishikawa
,
T.
,
Namazu
,
T.
,
Yoshiki
,
K.
,
Inoue
,
S.
, and
Hasegawa
,
Y.
,
2010
, “
Polycarbosilane-Derived Silicon-Carbide MEMS Component Fabricated by Slip Casting With SU8 Micro Mold
,”
23rd IEEE International Conference on Microelectromechanical Systems, MEMS 2010
, pp.
416
419
.
23.
Namazu
,
T.
,
Ishikawa
,
T.
, and
Hasegawa
,
Y.
,
2011
, “
Influence of Polymer Infiltration and Pyrolysis Process on Mechanical Strength of Polycarbosilane-Derived Silicon Carbide Ceramics
,”
J. Mater. Sci.
,
46
(
9
), pp.
3046
3051
.10.1007/s10853-010-5182-0
24.
Hasegawa
,
Y.
, and
Okamura
,
K.
,
1983
, “
Synthesis of Continuous Silicon Carbide Fibre; Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products
,”
J. Mater. Sci.
,
18
(
12
), pp.
3633
3648
.10.1007/BF00540736
25.
Soraru
,
G. D.
,
Babonneau
,
F.
, and
Mackenzie
,
J. D.
,
1990
, “
Structural Evolutions From Polycarbosilane to SiC Ceramic
,”
J. Mater. Sci.
,
25
(
9
), pp.
3886
3893
.10.1007/BF00582455
26.
Hasegawa
,
Y.
, “
New Curing Method for Polycarbosilane With Unsaturated Hydrocarbons and Application to Thermally Stable SiC Fibre
,”
Compos. Sci. Technol.
,
51
(
2
), pp.
161
166
.10.1016/0266-3538(94)90186-4
27.
Narisawa
,
M.
,
Kado
,
H.
,
Mori
,
R.
,
Yoshida
,
M.
,
Mabuchi
,
H.
,
Kohyama
,
A.
, and
Satoh
,
M.
,
2007
, “
Influence of Network Structure on Abnormally High Viscosity of Mixed Slurries of Silicon Carbide Nanopowder and Polycarbosilane
,”
J. Ceram. Soc. Jpn.
,
115
(
12
), pp.
982
986
.10.2109/jcersj2.115.982
28.
Zhu
,
S.
,
Ding
,
S.
,
Xi
,
H.
, and
Wang
,
R.
,
2005
, “
Low-Temperature Fabrication of Porous SiC Ceramics by Preceramic Polymer Reaction Bonding
,”
Mater. Lett.
,
59
(
5
), pp.
595
597
.10.1016/j.matlet.2004.11.003
29.
Jose
,
M.
,
Ferreira
,
F.
, and
Diz
,
H. M. M.
,
1999
, “
Effect of Solids Loading on Slip-Casting Performance of Silicon Carbide Slurries
,”
J. Am. Ceram. Soc.
,
82
(
8
), pp.
1993
2000
.
30.
Sugiyama
,
K.
, and
Korizuki
,
N.
,
1995
, “
Preparation of Low Density Free-Standing Shape of SiC by Pressure-Pulsed Chemical Vapour Infiltration
,”
J. Mater. Sci. Lett.
,
14
(
23
), pp.
1720
1722
.10.1007/BF00422686
31.
Mehregany
,
M.
, and
Zorman
,
C. A.
,
1999
, “
SiC MEMS: Opportunities and Challenges for Applications in Harsh Environments
,”
Thin Solid Films
,
355–356
(
1
), pp.
518
524
.10.1016/S0257-8972(99)00374-6
32.
Sugimoto
,
M.
,
Shimoo
,
T.
,
Okamura
,
K.
, and
Seguchi
,
T.
,
1995
, “
Reaction Mechanisms of Silicon Carbide Fiber Synthesis by Heat Treatment of Polycarbosilane Fibers Cured by Radiation: II, Free Radical Reaction
,”
J. Am. Ceram. Soc.
,
78
(
7
), pp.
1849
1852
.10.1111/j.1151-2916.1995.tb08898.x
33.
Bouillon
,
E.
,
Langlais
,
F.
,
Pailler
,
R.
,
Naslain
,
R.
,
Cruege
,
F.
,
Huong
,
P. V.
,
Sarthou
,
J. C.
,
Delpuech
,
A.
,
Laffon
,
C.
,
Lagarde
,
P.
,
Monthioux
,
M.
, and
Oberlin
,
A.
,
1991
, “
Conversion Mechanisms of a Polycarbosilane Precursor Into an SiOC-Based Ceramic Material
,”
J. Mater. Sci.
,
26
(
5
), pp.
1333
1345
.10.1007/BF00544474
34.
Mah
,
T.
,
Hecht
,
N. L.
,
McCullum
,
D. E.
,
Hoenigman
,
J. R.
,
Kim
,
H. M.
,
Katz
,
A. P.
, and
Lipsitt
,
H.
,
1984
, “
Thermal Stability of SiC Fibres
,”
J. Mater. Sci.
,
19
(
4
), pp.
1191
1201
.10.1007/BF01120029
35.
Simon
,
G.
, and
Bunsell
,
A. R.
,
1984
, “
Creep Behaviour and Structural Characterization at High Temperatures of Nicalon SiC Fibres
,”
J. Mater. Sci.
,
19
(
11
), pp.
3658
3670
.10.1007/BF02396938
36.
Sasaki
,
Y.
, and
Nishina
,
Y.
,
1987
, “
Raman Study of SiC Fibres Made From Polycarbosilane
,”
J. Mater. Sci.
,
22
, pp.
443
448
.10.1007/BF01160751
37.
Hemida
,
A. T.
,
Pailler
,
R.
, and
Naslain
,
R.
,
1997
, “
Continuous SiC-Based Model Monofilaments With a Low Free Carbon Content: Part I: From the Pyrolysis of a Polycarbosilane Precursor Under an Atmosphere of Hydrogen
,”
J. Mater. Sci.
,
32
(
9
), pp.
2359
2366
.10.1023/A:1018544805060
38.
Okamura
,
K.
,
1987
, “
Ceramic Fibres From Polymer Precursors
,”
Composites
,
18
(
2
), pp.
107
120
.10.1016/0010-4361(87)90489-7
39.
Zawrah
,
M. F.
, and
El-Gazery
,
M.
,
2007
, “
Mechanical Properties of SiC Ceramics by Ultrasonic Nondestructive Technique and Its Bioactivity
,”
Mater. Chem. Phys.
,
106
(
2–3
), pp.
330
337
.10.1016/j.matchemphys.2007.06.010
You do not currently have access to this content.