This paper examines the formation of burrs in micromilling of a thin nickel–titanium alloy (nitinol) foil used in implantable biomedical device applications. The paper analyzes the effects of key micromilling process parameters such as spindle speed, feed, tool wear, backing material, and adhesive used to attach the foil to the backing material on the burr height. It is found that burr height is larger on the downmilling side for grooves cut with a worn tool at high feeds, low spindle speeds with a softer backing material, and a weaker adhesive bond. Some important interaction effects of these factors are also studied. The study also shows that the mechanics of burr formation in such thin materials depends on whether the mode of cutting is dominated by tearing or chip formation, which is a function of the feed rate. A kinematic model to predict burr widths is developed and verified through experiments.

References

1.
Microlution
, “Case Studies,” Accessed Nov. 15, 2012, microlution-inc.com/solutions/casestudies.php
2.
Kathuria
,
Y. P.
,
2005
, “
Laser Microprocessing of Metallic Stent for Medical Therapy
,”
J. Mater. Process. Tech.
,
170
(
3
), pp.
545
550
.10.1016/j.jmatprotec.2005.05.041
3.
Takahata
,
K.
, and
Gianchandani
,
Y.
,
2004
, “
A Planar Approach for Manufacturing Cardiac Stents: Design, Fabrication, and Mechanical Evaluation
,”
J. Microelec. Syst.
,
13
(
6
), pp.
933
939
.10.1109/JMEMS.2004.838357
4.
Cassidy
,
V.
,
2008
, “
Ultrafast Track: The buzz about ultrafast-pulse lasers gets louder
,” MICROmanufacturing,
1
(
2
), www.micromanufacturing.com
5.
Schaffer
,
C. B.
,
Brodeur
,
A.
, and
Mazur
,
E.
,
2001
, “
Laser-Induced Breakdown and Damage in Bulk Transparent Materials Induced by Tightly Focused Femtosecond Laser Pulses
,”
Meas. Sci. Tech.
,
12
(
11
), pp.
1784
1794
.10.1088/0957-0233/12/11/305
6.
Gillespie
,
L. K.
,
Neal
,
B. J.
, and
Albright
,
R. K.
,
1976
, “
Burrs Produced by End Milling
,” Bendix Corp., Kansas, Technical Report No. BDX-613-1503.
7.
Lee
,
K.
, and
Dornfeld
,
D.
,
2005
, “
Micro-Burr Formation and Minimization through Process Control
,”
Precision Eng.
,
29
(
2
), pp.
246
252
.10.1016/j.precisioneng.2004.09.002
8.
Chern
,
G.
,
Wu
,
Y.
,
Cheng
,
J.
, and
Yao
,
J.
,
2007
, “
Study on Burr Formation in Micro-Machining Using Micro-Tools Fabricated by Micro-Edm
,”
Precision Eng.
,
31
(
2
), pp.
122
129
.10.1016/j.precisioneng.2006.04.001
9.
Olvera
,
O.
, and
Barrow
,
G.
,
1998
, “
Influence of Exit Angle and Tool Nose Geometry on Burr Formation in Face Milling Operations
,”
I. Mech. Eng. B J. Eng. Manf.
,
212
(
1
), pp.
59
72
.10.1243/0954405981515509
10.
Dornfeld
,
D. A.
, and
Min
,
S.
,
2009
, “
A Review of Burr Formation in Machining
,”
Proceedings of the CIRP International Conference on Burrs
,
Kaiserslautern, Germany
,
1
, pp. 3–11.
11.
Stein
,
J. M.
, and
Dornfeld
,
D. A.
,
1997
, “
Burr Formation in Drilling Miniature Holes
,”
CIRP Ann. Manf. Tech.
,
46
(
1
), pp.
63
66
.10.1016/S0007-8506(07)60776-8
12.
Lee
,
K.
, and
Dornfeld
,
D.
,
2002
, “
An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper
,”
Trans. NAMRI/SME
,
30
, pp.
255
262
.
13.
Liu
,
X.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
J. Manf. Sci. Eng.
,
126
(
4
), pp.
666
678
.10.1115/1.1813469
14.
Cambron
,
S.
,
Keynton
,
R.
, and
Franco
,
J.
,
2003
, “
Design and Fabrication of Microtacks for Retinal Implant Applications
,”
International Mechanical Engineering Congress and Exposition (IMECE2003)
,
Washington, DC
, pp.
247
249
.
15.
Melkote
,
S. N.
,
Newton
,
T. R.
,
Hellstern
,
C.
,
Morehouse
,
J. B.
, and
Turner
,
S.
,
2010
, “
Interfacial Burr Formation in Drilling of Stacked Aerospace Materials
,”
Proceedings of the CIRP International Conference on Burrs
,
Kaiserslautern, Germany
,
1
, pp.
89
98
.
16.
Guo
,
Y. B.
, and
Dornfeld
,
D.
,
1998
, “
Finite Element Analysis of Drilling Burr Minimization with a Backup Material
,”
Trans. NAMRI/SME
,
26
, pp.
207
212
.
17.
Marusich
,
T. D.
,
Usui
,
S.
,
Ma
,
J.
,
Stephenson
,
D. A.
, and
Shih
,
A.
,
2007
, “
Finite Element Modeling of Drilling Process With Solid and Indexable Tooling in Metal and Stack-Ups
,”
10th CIRP International Workshop on Modeling of Machining Operations
,
Reggio Calabria, Italy
, pp.
51
57
.
18.
Zheng
,
L.
,
Wang
,
C.
,
Yang
,
L.
,
Song
,
Y.
, and
Fu
,
L.
,
2012
, “
Characteristics of Chip Formation in the Micro-Drilling of Multi-Material Sheets
,”
Int. J. Mach. Tool Man.
,
52
(
1
), pp.
40
49
.10.1016/j.ijmachtools.2011.08.017
19.
ASTM
,
2010
, “
Standard Test Method for Peel or Stripping Strength on Adhesive Bonds
,”
D903-98
,
ASTM International
,
West Conshohocken, PA
, pp.
1
3
.
20.
Filiz
,
S.
,
Conley
,
C.
,
Wasserman
,
M.
, and
Ozdoganlar
,
O.
,
2007
, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tool Man.
,
47
(
8
), pp.
1088
1100
.10.1016/j.ijmachtools.2006.09.024
21.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precision Eng.
,
33
(
4
), pp.
402
407
.10.1016/j.precisioneng.2008.11.002
22.
Pelton
,
A. R.
,
Dicello
,
J.
, and
Miyazaki
,
S.
,
2000
, “
Optimisation of Processing and Properties of Medical Grade Nitinol Wire
,”
Proceedings of the International Conference on Shape Memory and Superelastic Technologies
,
Pacific Grove, CA
, pp.
361
374
.
23.
Buehler
,
W. J.
, and
Wang
,
F. E.
,
1968
, “
A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering
,”
Ocean Eng.
,
1
(
1
), pp.
105
120
.10.1016/0029-8018(68)90019-X
You do not currently have access to this content.