Abstract

Far-field spectral imaging, coupled with computer vision methods, is demonstrated as an effective inspection method for detection, classification, and root-cause analysis of manufacturing defects in large area Si nanopillar arrays. Si nanopillar arrays exhibit a variety of nanophotonic effects, causing them to produce colors and spectral signatures which are highly sensitive to defects, on both the macro- and nanoscales, which can be detected in far-field imaging. Compared with traditional nanometrology approaches like scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical scatterometry, spectral imaging offers much higher throughput due to its large field of view (FOV), micrometer-scale imaging resolution, sensitivity to nm-scale feature geometric variations, and ability to be performed in-line and nondestructively. Thus, spectral imaging is an excellent choice for high-speed defect detection/classification in Si nanopillar arrays and potentially other types of large-area nanostructure arrays (LNAs) fabricated on Si wafers, glass sheets, and roll-to-roll webs. The origins of different types of nano-imprint patterning defects—including particle voids, etch delay, and nonfilling—and the unique ways in which they manifest as optical changes in the completed nanostructure arrays are discussed. With this understanding in mind, computer vision methods are applied to spectral image data to detect and classify various defects in a sample containing wine glass-shaped Si resonator arrays.

References

1.
Sreenivasan
,
S. V.
,
2017
, “
Nanoimprint Lithography Steppers for Volume Fabrication of Leading-Edge Semiconductor Integrated Circuits
,”
Microsyst. Nanoeng.
,
3
(
1
), p.
17075
.10.1038/micronano.2017.75
2.
Ahn
,
S. H.
,
Yang
,
S.
,
Miller
,
M.
,
Ganapathisubramanian
,
M.
,
Menezes
,
M.
,
Choi
,
J.
,
Xu
,
F.
,
Resnick
,
D. J.
, and
Sreenivasan
,
S. V.
,
2013
, “
High-Performance Wire-Grid Polarizers Using Jet and FlashTM Imprint Lithography
,”
J. MicroNanolithography MEMS MOEMS
,
12
(
3
), p.
031104
.10.1117/1.JMM.12.3.031104
3.
Pallares
,
R. M.
,
Su
,
X.
,
Lim
,
S. H.
, and
Thanh
,
N. T. K.
,
2016
, “
Fine-Tuning of Gold Nanorod Dimensions and Plasmonic Properties Using the Hofmeister Effects
,”
J. Mater. Chem. C
,
4
(
1
), pp.
53
61
.10.1039/C5TC02426A
4.
Catrysse
,
P. B.
, and
Fan
,
S.
,
2010
, “
Nanopatterned Metallic Films for Use as Transparent Conductive Electrodes in Optoelectronic Devices
,”
Nano Lett.
,
10
(
8
), pp.
2944
2949
.10.1021/nl1011239
5.
van de Groep
,
J.
,
Spinelli
,
P.
, and
Polman
,
A.
,
2012
, “
Transparent Conducting Silver Nanowire Networks
,”
Nano Lett.
,
12
(
6
), pp.
3138
3144
.10.1021/nl301045a
6.
Cao
,
A.
,
Sudhölter
,
E.
, and
de Smet
,
L.
,
2013
, “
Silicon Nanowire‐Based Devices for Gas-Phase Sensing
,”
Sensors
,
14
(
1
), pp.
245
271
.10.3390/s140100245
7.
Field
,
C. R.
,
In
,
H. J.
,
Begue
,
N. J.
, and
Pehrsson
,
P. E.
,
2011
, “
Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires With a Porous Electrode
,”
Anal. Chem.
,
83
(
12
), pp.
4724
4728
.10.1021/ac200779d
8.
Zhao
,
H.
, “
Vertical Silicon Nanowire Arrays for Gas Sensing
,” Massachusetts Institute of Technology, Cambridge, MA, p.
97
.
9.
Park
,
H.
, and
Crozier
,
K. B.
,
2015
, “
Vertically Stacked Photodetector Devices Containing Silicon Nanowires With Engineered Absorption Spectra
,”
ACS Photonics
,
2
(
4
), pp.
544
549
.10.1021/ph500463r
10.
Park
,
H.
,
Dan
,
Y.
,
Seo
,
K.
,
Yu
,
Y. J.
,
Duane
,
P. K.
,
Wober
,
M.
, and
Crozier
,
K. B.
,
2014
, “
Filter-Free Image Sensor Pixels Comprising Silicon Nanowires With Selective Color Absorption
,”
Nano Lett.
,
14
(
4
), pp.
1804
1809
.10.1021/nl404379w
11.
Park
,
H.
, and
Crozier
,
K. B.
,
2013
, “
Multispectral Imaging With Vertical Silicon Nanowires
,”
Sci. Rep.
,
3
, p.
2460
.10.1038/srep02460
12.
Kim
,
W.-K.
,
Lee
,
S.
,
Hee Lee
,
D.
,
Hee Park
,
I.
,
Seong Bae
,
J.
,
Woo Lee
,
T.
,
Kim
,
J.-Y.
,
Hun Park
,
J.
,
Chan Cho
,
Y.
,
Ryong Cho
,
C.
, and
Jeong
,
S.-Y.
,
2015
, “
Cu Mesh for Flexible Transparent Conductive Electrodes
,”
Sci. Rep.
,
5
(
1
), p.
10715
.10.1038/srep10715
13.
Chang
,
S.
,
Oh
,
J.
,
Boles
,
S. T.
, and
Thompson
,
C. V.
,
2010
, “
Fabrication of Silicon Nanopillar-Based Nanocapacitor Arrays
,”
Appl. Phys. Lett.
,
96
(
15
), p.
153108
.10.1063/1.3374889
14.
Cherala
,
A.
,
Chopra
,
M.
,
Yin
,
B. A.
,
Mallavarapu
,
A.
,
Singhal
,
S.
,
Abed
,
O.
,
Bonnecaze
,
R. T.
, and
Sreenivasan
,
S. V.
,
2016
, “
Nanoshape Imprint Lithography for Fabrication of Nanowire Ultracapacitors
,”
IEEE Trans. Nanotechnol.
,
15
(
3
), pp.
448
456
.10.1109/TNANO.2016.2541859
15.
Na
,
H.
, and
Endoh
,
T.
,
2013
, “
A Multi-Pillar Vertical Metal–Oxide–Semiconductor Field-Effect Transistor Type Dynamic Random Access Memory Core Circuit for Sub-1 V Core Voltage Operation Without Overdrive Technique
,”
Jpn. J. Appl. Phys.
,
52
(
4S
), p.
04CE08
.10.7567/JJAP.52.04CE08
16.
Chung
,
H.
,
Kim
,
H.
,
Kim
,
H.
,
Kim
,
K.
,
Kim
,
S.
,
Song
,
K.-W.
,
Kim
,
J.
,
Oh
,
Y. C.
,
Hwang
,
Y.
,
Hong
,
H.
,
Jin
,
G.-Y.
, and
Chung
,
C.
,
2011
, “
Novel 4F2 DRAM Cell With Vertical Pillar Transistor(VPT)
,”
Proceedings of the European Solid-State Device Research Conference (ESSDERC)
, IEEE, Helsinki, Finland, pp.
211
214
.
17.
Sun
,
Y.
,
Yu
,
H. Y.
,
Singh
,
N.
,
Le
,
T. T.
,
Gnani
,
E.
,
Baccarani
,
G.
,
Leong
,
K. C.
,
Lo
,
G. Q.
, and
Kwong
,
D. L.
,
2011
, “
Junction-Less Stackable SONOS Memory Realized on Vertical-Si-Nanowire for 3-D Application
,”
Proceedings of International Symposium on VLSI Technology, Systems and Applications
, Hsinchu, Taiwan, Apr. 25–27, pp.
1
2
.
18.
Proust
,
J.
,
Bedu
,
F.
,
Gallas
,
B.
,
Ozerov
,
I.
, and
Bonod
,
N.
,
2016
, “
All-Dielectric Colored Metasurfaces With Silicon Mie Resonators
,”
ACS Nano
,
10
(
8
), pp.
7761
7767
.10.1021/acsnano.6b03207
19.
Gawlik
,
B. M.
,
Cossio
,
G.
,
Kwon
,
H.
,
Jurado
,
Z.
,
Palacios
,
B.
,
Singhal
,
S.
,
Alù
,
A.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2018
, “
Structural Coloration With Hourglass-Shaped Vertical Silicon Nanopillar Arrays
,”
Opt. Exp.
,
26
(
23
), p.
30952
.10.1364/OE.26.030952
20.
Zeiss
, “
ZEISS MultiSEM 505/506 the World's Fastest Scanning Electron Microscopes
,” Zeiss, Oberkochen, Germany, accessed Feb. 1, 2020, https://www.zeiss.com/microscopy/us/products/scanning-electron-microscopes/multisem.html
21.
Flauraud
,
V.
,
Reyes
,
M.
,
Paniagua-Domínguez
,
R.
,
Kuznetsov
,
A. I.
, and
Brugger
,
J.
,
2017
, “
Silicon Nanostructures for Bright Field Full Color Prints
,”
ACS Photonics
,
4
(
8
), pp.
1913
1919
.10.1021/acsphotonics.6b01021
22.
Seo
,
K.
,
Wober
,
M.
,
Steinvurzel
,
P.
,
Schonbrun
,
E.
,
Dan
,
Y.
,
Ellenbogen
,
T.
, and
Crozier
,
K. B.
,
2011
, “
Multicolored Vertical Silicon Nanowires
,”
Nano Lett.
,
11
(
4
), pp.
1851
1856
.10.1021/nl200201b
23.
Gawlik
,
B. M.
,
Barrera
,
C.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2020
, “
Hyperspectral Imaging for High Throughput, Spatially Resolved Spectroscopic Scatterometry of Silicon Nanopillar Arrays
,” Opt. Express, 28, pp.
14209
14221
.
24.
Institute of Ophthalmology
,
2019
, “
Colour Matching Functions
,”
Institute of Ophthalmology, London, UK, accessed Nov. 3,
http://cvrl.ioo.ucl.ac.uk/cmfs.htm
25.
Ford
,
A.
, and
Roberts
,
A.
,
1998
, “
Colour Space Conversions
,” p.
31
.
26.
PlasmaTherm
, 2019, “
Deep Silicon Etching
,” PlasmaTherm, accessed Feb. 17, 2021, http://www.plasma-therm.com/etch-dse.html
27.
Singhal
,
S.
,
Grigas
,
M. A.
, and
Sreenivasan
,
S. V.
,
2016
, “
Mechanics-Based Approach for Detection and Measurement of Particle Contamination in Proximity Nanofabrication Processes
,”
ASME J. Micro Nano-Manuf.
,
4
(
3
), p.
031004
.10.1115/1.4033742
28.
Mathworks
, “
Imopen
,”
Mathworks, Natick, MA
, accessed Feb. 1, 2020, https://www.mathworks.com/help/images/ref/imopen.html
You do not currently have access to this content.