Abstract

Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designs in addition to accurate measurements, obtained from 3D X-ray micro-computed tomography (μ-CT) imaging. The entire volume of the constructed geometries was subsequently meshed using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach, based on the density-based and pressure-based Navier–Stokes formation, was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (i.e., 106). Turbulence was modeled using the realizable k-ε viscous model with scalable wall functions. A coupled two-phase flow model was, in addition, set up to track a large number of injected particles. The boundary conditions of the CFD model were defined based on experimental sensor data, recorded from the AJP control system. The accuracy of the model was validated using a factorial experiment, composed of AJ-deposition of a silver nanoparticle ink on a polyimide substrate. The outcomes of this study pave the way for the implementation of physics-driven in situ monitoring and control of AJP.

References

1.
Krzeminski
,
J.
,
Wroblewski
,
G.
,
Dybowska-Sarapuk
,
L.
,
Lepak
,
S.
, and
Jakubowska
,
M.
,
2017
, “
Nanosilver Conductive Lines Made by Spray Coating and Aerosol Jet Printing Technique
,” Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017,
International Society for Optics and Photonics,
Wilga, Poland, Aug. 7, p.
1044555
.10.1117/12.2280836
2.
Seifert
,
T.
,
Baum
,
M.
,
Roscher
,
F.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2015
, “
Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects
,”
Mater. Today: Proc.
,
2
(
8
), pp.
4262
4271
.10.1016/j.matpr.2015.09.012
3.
Vogeler
,
F.
,
Verheecke
,
W.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2013
, “
An Initial Study Into Aerosol Jet Printed Interconnections on Extrusion Based 3D Printed Substrates
,”
Strojniski Vestnik-J. Mech. Eng.
,
59
(
11
), pp.
689
696
.10.5545/sv-jme.2013.999
4.
Reitberger
,
T.
,
Franke
,
J.
,
Hoffmann
,
G.-A.
,
Overmeyer
,
L.
,
Lorenz
,
L.
, and
Wolter
,
K.-J.
,
2016
, “
Integration of Polymer Optical Waveguides by Using Flexographic and Aerosol Jet Printing
,” Proceedings of the 12th International Congress Molded Interconnect Devices (MID), Würzburg, German, Sept. 28–29,
IEEE
, pp.
1
6
.10.1109/ICMID.2016.7738933
5.
Reitberger
,
T.
,
Hoffmann
,
G.-A.
,
Wolfer
,
T.
,
Overmeyer
,
L.
, and
Franke
,
J.
,
2016
, “
Printing Polymer Optical Waveguides on Conditioned Transparent Flexible Foils by Using the Aerosol Jet Technology
,”
Proceedings of Printed Memory and Circuits II
, San Diego, CA, Aug. 28–Sept. 1, p.
99450G
.10.1117/12.2236220
6.
Eckstein
,
R.
,
Hernandez-Sosa
,
G.
,
Lemmer
,
U.
, and
Mechau
,
N.
,
2014
, “
Aerosol Jet Printed Top Grids for Organic Optoelectronic Devices
,”
Org. Electron.
,
15
(
9
), pp.
2135
2140
.10.1016/j.orgel.2014.05.031
7.
Rudorfer
,
A.
,
Tscherner
,
M.
,
Palfinger
,
C.
,
Reil
,
F.
,
Hartmann
,
P.
,
Seferis
,
I. E.
,
Zych
,
E.
, and
Wenzl
,
F. P.
,
2016
, “
A Study on Aerosol Jet Printing Technology in LED Module Manufacturing
,”
Proceeding of the Fifteenth International Conference on Solid State Lighting and LED-Based Illumination Systems
, San Diego, CA, Aug. 28–Sept. 1, p.
99540E
.10.1117/12.2237737
8.
Tait
,
J. G.
,
Witkowska
,
E.
,
Hirade
,
M.
,
Ke
,
T.-H.
,
Malinowski
,
P. E.
,
Steudel
,
S.
,
Adachi
,
C.
, and
Heremans
,
P.
,
2015
, “
Uniform Aerosol Jet Printed Polymer Lines With 30 μm Width for 140ppi Resolution RGB Organic Light Emitting Diodes
,”
Org. Electron.
,
22
, pp.
40
43
.10.1016/j.orgel.2015.03.034
9.
Oh
,
Y. S.
,
Lee
,
K. H.
,
Jung
,
J. H.
,
Ko
,
S. H.
, and
Sung
,
H. J.
,
2012
, “
Multicolor Luminescent Patterns of Quantum Dot Through Real-Time Controlling
,”
Proceedings of the 14th Korean MEMS Conference (FP-1-35)
, Jeju, South Korea, Apr. 5, pp.
5
7
.
10.
Wang
,
S.-W.
,
Lin
,
H.-Y.
,
Lin
,
C.-C.
,
Kao
,
T. S.
,
Chen
,
K.-J.
,
Han
,
H.-V.
,
Li
,
J.-R.
,
Lee
,
P.-T.
,
Chen
,
H.-M.
,
Hong
,
M.-H.
, and
Kuo
,
H.-C.
,
2016
, “
Pulsed-Laser Micropatterned Quantum-Dot Array for White Light Source
,”
Sci. Rep.
,
6
(
1
), p. 23563.10.1038/srep23563
11.
Goth
,
C.
,
Putzo
,
S.
, and
Franke
,
J.
, “
Aerosol Jet Printing on Rapid Prototyping Materials for Fine Pitch Electronic Applications
,” Proceeding of the IEEE Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, 31 May–03 June, pp.
1211
1216
.10.1109/ECTC.2011.5898664
12.
Liu
,
R.
,
Ding
,
H.
,
Lin
,
J.
,
Shen
,
F.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2012
, “
Fabrication of Platinum-Decorated Single-Walled Carbon Nanotube Based Hydrogen Sensors by Aerosol Jet Printing
,”
Nanotechnology
,
23
(
50
), p.
505301
.10.1088/0957-4484/23/50/505301
13.
Zhao
,
D.
,
Liu
,
T.
,
Zhang
,
M.
,
Liang
,
R.
, and
Wang
,
B.
,
2012
, “
Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures
,”
Smart Mater. Struct.
,
21
(
11
), p.
115008
.10.1088/0964-1726/21/11/115008
14.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), pp.
434
437
.10.1016/j.mee.2009.05.034
15.
Kim
,
S. H.
,
Hong
,
K.
,
Lee
,
K. H.
, and
Frisbie
,
C. D.
,
2013
, “
Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly (3-Hexylthiophene)
,”
ACS Appl. Mater. Interfaces
,
5
(
14
), pp.
6580
6585
.10.1021/am401200y
16.
Liu
,
R.
,
Shen
,
F.
,
Ding
,
H.
,
Lin
,
J.
,
Gu
,
W.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2013
, “
All-Carbon-Based Field Effect Transistors Fabricated by Aerosol Jet Printing on Flexible Substrates
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065027
.10.1088/0960-1317/23/6/065027
17.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.-Manuf. Technol.
,
57
(
2
), pp.
601
620
.10.1016/j.cirp.2008.09.006
18.
King
,
B.
, and
Renn
,
M.
,
2009
, “
Aerosol Jet Direct Write Printing for Mil-Aero Electronic Applications
,”
Proceedings of the Lockheed Martin Palo Alto Colloquia
, Palo Alto, CA, Mar. 26, pp.
1
6
.https://www.optomec.com/wp-content/uploads/2014/04/Optomec_Aerosol_Jet_Direct_Write_Printing_for_Mil_Aero_Electronic_Apps.pdf
19.
Parekh
,
D. P.
,
Cormier
,
D.
, and
Dickey
,
M. D.
,
2015
, “
Chapter 8: Multifunctional Printing: Incorporating Electronics Into 3D Parts Made by Additive Manufacturing
,”
Additive Manufacturing
,
A.
Ban
, dyopadhyay, and
S.
Bose
, eds.,
CRC Press
,
Boca Raton, FL
, p.
215
.
20.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Tootooni
,
M. S.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2020
, “
A Sparse Representation Classification Approach for Near Real-Time, Physics-Based Functional Monitoring of Aerosol Jet-Fabricated Electronics
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081007
.10.1115/1.4047045
21.
Salary
,
R.
,
Lombardi
,
J.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101010
.10.1115/1.4036660
22.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
23.
Wadhwa
,
A.
,
2015
, “
Run-Time Ink Stability in Pneumatic Aerosol Jet Printing Using a Split Stream Solvent Add Back System
,”
M.S. thesis
, Advisor: Denis Cormier, Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY.https://scholarworks.rit.edu/theses/8597/
24.
Lombardi
,
J. P.
,
Salary
,
R.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
In Situ Image-Based Monitoring and Closed-Loop Control of Aerosol Jet Printing
,”
ASME
Paper No. 6487.10.1115/6487
25.
Salary
,
R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2017
, “
Additive Manufacturing (AM) of Flexible Electronic Devices: Online Monitoring of 3D Line Morphology in Aerosol Jet Printing Process Using Shape-From-Shading Image Analysis
,”
ASME
Paper No. 2947.10.1115/2947
26.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2016
, “
In Situ Sensor-Based Monitoring and Computational Fluid Dynamics (CFD) Modeling of Aerosol Jet Printing (AJP) Process
,”
ASME
Paper No. 8535.10.1115/8535
27.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Tootooni
,
M. S.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
In Situ Functional Monitoring of Aerosol Jet Printed Electronic Devices Using a Combined Sparse Classification Approach
,”
ASME
Paper No. 6586.10.1115/6586
28.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A Computational Fluid Dynamics (CFD) Study of Material Transport and Deposition in Aerosol Jet Printing (AJP) Process
,”
ASME
Paper No. 87647.10.1115/87647
29.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A State-of-the-Art Review on Aerosol Jet Printing (AJP) Additive Manufacturing Process
,”
ASME
Paper No. 3008.10.1115/3008
30.
Wang
,
K.
,
Chang
,
Y.-H.
,
Zhang
,
C.
, and
Wang
,
B.
,
2016
, “
Conductive-on-Demand: Tailorable Polyimide/Carbon Nanotube Nanocomposite Thin Film by Dual-Material Aerosol Jet Printing
,”
Carbon
,
98
, pp.
397
403
.10.1016/j.carbon.2015.11.032
31.
Efimov
,
A.
,
Arsenov
,
P.
,
Protas
,
N.
,
Minkov
,
K.
,
Urazov
,
M.
, and
Ivanov
,
V.
,
2017
, “
Dry Aerosol Jet Printing of Conductive Silver Lines on a Heated Silicon Substrate
,” Proceeding of the IOP Conference Series: Materials Science and Engineering, International Conference on Mechanical Engineering and Applied Composite Materials,
IOP Publishing
, Hong Kong, Nov. 23–24, p.
012082
.10.1088/1757-899X/307/1/012082
32.
Efimov
,
A.
,
Arsenov
,
P.
,
Volkov
,
I.
,
Urazov
,
M.
, and
Ivanov
,
V.
,
2017
, “
Study of Aerosol Jet Printing With Dry Nanoparticles Synthesized by Spark Discharge
,”
IOP Conf. Series: J. Phys.: Conf. Series
,
917
(
9
), p.
092020
.10.1088/1742-6596/917/9/092020
33.
Gu
,
Y.
,
Gutierrez
,
D.
,
Das
,
S.
, and
Hines
,
D.
,
2017
, “
Inkwells for on-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing
,”
J. Micromech. Microeng.
,
27
(
9
), p.
097001
.10.1088/1361-6439/aa817f
34.
Chang
,
Y.-H.
,
2017
, “
Process Monitoring, Modeling, and Quality Assessment for Printed Electronics With Aerosol Jet Printing Technology
,” Ph.D. dissertation, Advisor: Dr. Ben Wang, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.
35.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2015
, “
Velocity-Regulated Path Planning Algorithm for Aerosol Printing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031020
.10.1115/1.4029976
36.
Smith
,
M.
,
Choi
,
Y. S.
,
Boughey
,
C.
, and
Kar-Narayan
,
S.
,
2017
, “
Controlling and Assessing the Quality of Aerosol Jet Printed Features for Large Area and Flexible Electronics
,”
Flexible Printed Electron.
,
2
(
1
), p.
015004
.10.1088/2058-8585/aa5af9
37.
Sun
,
H.
,
Wang
,
K.
,
Li
,
Y.
,
Zhang
,
C.
, and
Jin
,
R.
,
2017
, “
Quality Modeling of Printed Electronics in Aerosol Jet Printing Based on Microscopic Images
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071012
.10.1115/1.4035586
38.
Li
,
Y.
,
Mohan
,
K.
,
Sun
,
H.
, and
Jin
,
R.
,
2017
, “
Ensemble Modeling of In Situ Features for Printed Electronics Manufacturing With In Situ Process Control Potential
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1864
1870
.10.1109/LRA.2017.2713242
39.
Verheecke
,
W.
,
Van Dyck
,
M.
,
Vogeler
,
F.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2012
, “
Optimizing Aerosol Jet Printing of Silver Interconnects on Polyimide Film for Embedded Electronics Applications
,”
Proceedings of the Eighth International DAAAM Baltic Conference
Danube Adria Association for Automation and Manufacturing (DAAAM), Tallinn, Estonia, Apr. 19–21, pp.
373
379.
40.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.10.1021/am400606y
41.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D. R.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol‐Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), pp.
1701084
1701084
.10.1002/adem.201701084
42.
Feng
,
J. Q.
,
2015
, “
Sessile Drop Deformations Under an Impinging Jet
,”
Theor. Comput. Fluid Dyn.
,
29
(
4
), pp.
277
290
.10.1007/s00162-015-0353-x
43.
Feng
,
J. Q.
,
2016
,
A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,
Cornell University Library, Physics-Fluid Dynamics, Xiv
:1602.07672, Ithaca, NY.
44.
Feng
,
J. Q.
,
2018
, “
A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer
,”
Preprints
, 2018020128.10.20944/preprints201802.0128.v4
45.
Schulz
,
D.
,
Hoey
,
J.
,
Thompson
,
D.
,
Swenson
,
O.
,
Han
,
S.
,
Lovaasen
,
J.
,
Dai
,
X.
,
Braun
,
C.
,
Keller
,
K.
, and
Akhatov
,
I.
,
2008
, “
Collimated Aerosol Beam Deposition: Sub 5-μm Resolution of Printed Actives and Passives
,”
Proceedings of the Flexible Electronics and Displays Conference and Exhibition
, Phoenix, AZ, Jan. 21–24, pp.
1
8
.10.1109/FEDC.2008.4483871
46.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Focusing in Micro-Capillaries: Theory and Experiment
,”
J. Aerosol Sci.
,
39
(
8
), pp.
691
709
.10.1016/j.jaerosci.2008.04.004
47.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Flow Through a Long Micro-Capillary: Collimated Aerosol Beam
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
215
224
.10.1007/s10404-007-0239-3
48.
Akhatov
,
I. S.
,
Hoey
,
J. M.
,
Thompson
,
D.
,
Lutfurakhmanov
,
A.
,
Mahmud
,
Z.
,
Swenson
,
O. F.
,
Schulz
,
D. L.
, and
Osiptsov
,
A. N.
,
2009
, “
Aerosol Flow Through a Micro-Capillary
,”
Proceeding of the Second International Conference on Micro/Nanoscale Heat and Mass Transfer
, Shanghai, China, Dec. 18–21, pp.
223
232
.
49.
May
,
K.
,
1973
, “
The Collison Nebulizer: Description, Performance and Application
,”
J. Aerosol Sci.
,
4
(
3
), pp.
235
243
.10.1016/0021-8502(73)90006-2
50.
Hoey
,
J. M.
,
Lutfurakhmanov
,
A.
,
Schulz
,
D. L.
, and
Akhatov
,
I. S.
,
2012
, “
A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics
,”
J. Nanotechnol.
,
2012
, pp.
1
22
.10.1155/2012/324380
51.
Renn
,
M. J.
,
Christenson
,
K. K.
,
Giroux
,
D.
,
Resin Designs
,
L.
, and
Blazej
,
D.
,
2013
, “
Aerosol Jet Printing of Conductive Epoxy for 3D Packaging
,”
Proceeding of Pan Pacific Microelectronics Symposium (PAN PAC 2013)
, Maui, HI, Jan. 22–24, pp.
1
7
.
52.
King
,
B. H.
, Renn, M. J., and Paulsen, J. A.,
2011
, “
Miniature Aerosol Jet and Aerosol Jet Array
,” Optomec Inc., Albuquerque, NM, U.S. Patent No. US7938341B2 (U.S. Patent and Trademark Office, Washington, DC).
53.
ANSYS-Fluent
,
2015
, “
16.2 Theory Guide
,” ANSYS, Canonsburg, PA.
54.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education in South Asia
,
Noida, India
.
55.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
56.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Applied Mechanics Engineering
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
57.
Gosman
,
A.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
58.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
59.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.10.1080/02786829208959550
60.
Lombardi
,
J. P.
,
Salary
,
R. R.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2019
, “
Image-Based Closed-Loop Control of Aerosol Jet Printing Using Classical Control Methods
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071011
.10.1115/1.4043659
You do not currently have access to this content.