Abstract

Graphene is an ideal reinforcement material for metal matrix composites (MMCs) owing to its high strength, high ductility, light weight, as well as good bonding with metal matrix. In this study, graphene nanoplatelets (GNPs) reinforced Inconel 718 composites are fabricated by selective laser melting (SLM) technique and processed under various postheat treatment schemes. It is found that the fabrication of GNPs-reinforced MMC using the SLM technique is a viable approach. The obtained composite possesses dense microstructure and enhanced tensile strength. Postheat treatments at two levels of solution temperature (980 and 1220 °C) for 1 h followed by two-step aging are carried out. The experimental results indicate that the addition of GNPs into Inconel 718 matrix results in significant strength improvement. Under the as-built condition, the ultimate tensile strengths (UTSs) of SLM Inconel 718 materials are 997 and 1447 MPa, respectively, at 0 and 4.4 vol % GNP content. The strengthening effect of GNPs is most prominent under the as-built condition, and the strength of as-built GNPs-reinforced Inconel 718 is higher than that of unreinforced Inconel 718 under any processing conditions. The formation of γ′ and γ″ precipitates is suppressed in the GNPs-reinforced composite under the aging condition due to the formation of metallic carbide (MC) carbide and the depletion of Nb. GNPs effectively inhibits grain growth during postheat treatment. Quantitative investigation of the various strengthening effects demonstrates that load transfer effect is dominating among all contributors.

References

1.
Jang
,
B. Z.
, and
Zhamu
,
A.
,
2008
, “
Processing of Nanographene Platelets (NGPs) and NGP Nanocomposites: A Review
,”
J. Mater. Sci.
,
43
(
15
), pp.
5092
5101
.10.1007/s10853-008-2755-2
2.
Bastwros
,
M.
,
Kim
,
G.-Y.
,
Zhu
,
C.
,
Zhang
,
K.
,
Wang
,
S.
,
Tang
,
X.
, and
Wang
,
X.
,
2014
, “
Effect of Ball Milling on Graphene Reinforced Al6061 Composite Fabricated by Semi-Solid Sintering
,”
Composites, Part B
,
60
, pp.
111
118
.10.1016/j.compositesb.2013.12.043
3.
Rashad
,
M.
,
Pan
,
F.
,
Asif
,
M.
, and
Tang
,
A.
,
2014
, “
Powder Metallurgy of Mg–1% Al–1% Sn Alloy Reinforced With Low Content of Graphene Nanoplatelets (GNPs
),”
J. Ind. Eng. Chem.
,
20
(
6
), pp.
4250
4255
.10.1016/j.jiec.2014.01.028
4.
Rashad
,
M.
,
Pan
,
F.
,
Tang
,
A.
, and
Asif
,
M.
,
2014
, “
Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method
,”
Prog. Nat. Sci.: Mater. Int.
,
24
(
2
), pp.
101
108
.10.1016/j.pnsc.2014.03.012
5.
Kim
,
W. J.
,
Lee
,
T. J.
, and
Han
,
S. H.
,
2014
, “
Multi-Layer Graphene/Copper Composites: Preparation Using High-Ratio Differential Speed Rolling, Microstructure and Mechanical Properties
,”
Carbon
,
69
, pp.
55
65
.10.1016/j.carbon.2013.11.058
6.
Fattahi
,
M.
,
Gholami
,
A. R.
,
Eynalvandpour
,
A.
,
Ahmadi
,
E.
,
Fattahi
,
Y.
, and
Akhavan
,
S.
,
2014
, “
Improved Microstructure and Mechanical Properties in Gas Tungsten Arc Welded Aluminum Joints by Using Graphene Nanosheets/Aluminum Composite Filler Wires
,”
Micron
,
64
, pp.
20
27
.10.1016/j.micron.2014.03.013
7.
Chen
,
L.-Y.
,
Konishi
,
H.
,
Fehrenbacher
,
A.
,
Ma
,
C.
,
Xu
,
J.-Q.
,
Choi
,
H.
,
Xu
,
H.-F.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.-C.
,
2012
, “
Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites
,”
Scr. Mater.
,
67
(
1
), pp.
29
32
.10.1016/j.scriptamat.2012.03.013
8.
Zhao
,
L.
,
Lu
,
H.
, and
Gao
,
Z.
,
2015
, “
Microstructure and Mechanical Properties of Al/Graphene Composite Produced by High‐Pressure Torsion
,”
Adv. Eng. Mater.
,
17
(
7
), pp.
976
981
.10.1002/adem.201400375
9.
Singh
,
B. P.
,
Nayak
,
S.
,
Nanda
,
K. K.
,
Jena
,
B. K.
,
Bhattacharjee
,
S.
, and
Besra
,
L.
,
2013
, “
The Production of a Corrosion Resistant Graphene Reinforced Composite Coating on Copper by Electrophoretic Deposition
,”
Carbon
,
61
, pp.
47
56
.10.1016/j.carbon.2013.04.063
10.
Peng
,
Y.
,
Hu
,
Y.
,
Han
,
L.
, and
Ren
,
C.
,
2014
, “
Ultrasound-Assisted Fabrication of Dispersed Two-Dimensional Copper/Reduced Graphene Oxide Nanosheets Nanocomposites
,”
Composites, Part B
,
58
, pp.
473
477
.10.1016/j.compositesb.2013.10.036
11.
Zhai
,
W.
,
Shi
,
X.
,
Wang
,
M.
,
Xu
,
Z.
,
Yao
,
J.
,
Song
,
S.
, and
Wang
,
Y.
,
2014
, “
Grain Refinement: A Mechanism for Graphene Nanoplatelets to Reduce Friction and Wear of Ni3Al Matrix Self-Lubricating Composites
,”
Wear
,
310
(
1–2
), pp.
33
40
.10.1016/j.wear.2013.12.014
12.
AlMangour
,
B.
, and
Grzesiak
,
D.
,
2016
, “
Selective Laser Melting of TiC Reinforced 316 L Stainless Steel Matrix Nanocomposites: Influence of Starting TiC Particle Size and Volume Content
,”
Mater. Des.
,
104
, pp.
141
151
.10.1016/j.matdes.2016.05.018
13.
Gu
,
D.
,
Meng
,
G.
,
Li
,
C.
,
Meiners
,
W.
, and
Poprawe
,
R.
,
2012
, “
Selective Laser Melting of TiC/Ti Bulk Nanocomposites: Influence of Nanoscale Reinforcement
,”
Scr. Mater.
,
67
(
2
), pp.
185
188
.10.1016/j.scriptamat.2012.04.013
14.
Hong
,
C.
,
Gu
,
D.
,
Dai
,
D.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M.
, and
Poprawe
,
R.
,
2013
, “
Laser Metal Deposition of TiC/Inconel 718 Composites With Tailored Interfacial Microstructures
,”
Opt. Laser Technol.
,
54
, pp.
98
109
.10.1016/j.optlastec.2013.05.011
15.
Gu
,
D.
,
Hong
,
C.
,
Jia
,
Q.
,
Dai
,
D.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M.
, and
Poprawe
,
R.
,
2014
, “
Combined Strengthening of Multi-Phase and Graded Interface in Laser Additive Manufactured TiC/Inconel 718 Composites
,”
J. Phys. D: Appl. Phys.
,
47
(
4
), p.
045309
.10.1088/0022-3727/47/4/045309
16.
Bi
,
G.
,
Sun
,
C. N.
,
Nai
,
M. L.
, and
Wei
,
J.
,
2013
, “
Micro-Structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited Using LAAM
,”
Phys. Procedia
,
41
, pp.
828
834
.10.1016/j.phpro.2013.03.155
17.
Lin
,
D.
,
Richard Liu
,
C.
, and
Cheng
,
G. J.
,
2014
, “
Single-Layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement
,”
Acta Mater.
,
80
, pp.
183
193
.10.1016/j.actamat.2014.07.038
18.
Hu
,
Z.
,
Tong
,
G.
,
Lin
,
D.
,
Nian
,
Q.
,
Shao
,
J.
,
Hu
,
Y.
,
Saeib
,
M.
,
Jin
,
S.
, and
Cheng
,
G. J.
,
2016
, “
Laser Sintered Graphene Nickel Nanocomposites
,”
J. Mater. Process. Technol.
,
231
, pp.
143
150
.10.1016/j.jmatprotec.2015.12.022
19.
Wang
,
Y.
,
Shi
,
J.
,
Lu
,
S.
, and
Wang
,
Y.
,
2017
, “
Selective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
41005
.10.1115/1.4034712
20.
Lia
,
E.
,
1994
, “
Superalloys 718, 625, 706 and Various Derivatives
,”
Pittsburgh
, PA.
21.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1992
, “
Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718
,”
Metall. Trans. A
,
23
(
7
), pp.
2015
2028
.10.1007/BF02647549
22.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
23.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti 6Al 6V 2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.10.1016/S0043-1648(96)07255-9
24.
Rao
,
G. A.
,
Srinivas
,
M.
, and
Sarma
,
D. S.
,
2004
, “
Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel* 718
,”
Mater. Sci. Technol.
,
20
(
9
), pp.
1161
1170
.10.1179/026708304225022124
25.
Radavich
,
J. F.
,
1989
, “
The Physical Metallurgy of Cast and Wrought Alloy 718
,”
Conference Proceedings on Superalloy
, Vol.
718, Warrandale, PA
, pp.
229
240
.
26.
Yeh
,
A.-C.
,
Lu
,
K.-W.
,
Kuo
,
C.-M.
,
Bor
,
H.-Y.
, and
Wei
,
C.-N.
,
2011
, “
Effect of Serrated Grain Boundaries on the Creep Property of Inconel 718 Superalloy
,”
Mater. Sci. Eng.: A
,
530
, pp.
525
529
.10.1016/j.msea.2011.10.014
27.
Wang
,
Y.
,
Shi
,
J.
,
Lu
,
S.
, and
Wang
,
Y.
,
2016
, “
Solution and Aging Treatments of Inconel 718/TiC Nanocomposite From Selective Laser Melting
,”
ASME
Paper No. MSEC2016-8684
.10.1115/MSEC2016-8684
28.
Chang
,
L.
,
Sun
,
W.
,
Cui
,
Y.
,
Zhang
,
F.
, and
Yang
,
R.
,
2014
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of the Hot-Isostatic-Pressed Inconel 718 Powder Compact
,”
J. Alloys Compd.
,
590
, pp.
227
232
.10.1016/j.jallcom.2013.12.107
29.
Cowen
,
C. J.
,
Danielson
,
P. E.
, and
Jablonski
,
P. D.
,
2011
, “
The Microstructural Evolution of Inconel Alloy 740 During Solution Treatment, Aging, and Exposure at 760 C
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
1078
1083
.10.1007/s11665-010-9731-0
30.
Liu
,
Z. Y.
,
Xiao
,
B. L.
,
Wang
,
W. G.
, and
Ma
,
Z. Y.
,
2012
, “
Singly Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined With Friction Stir Processing
,”
Carbon
,
50
(
5
), pp.
1843
1852
.10.1016/j.carbon.2011.12.034
31.
Nardone
,
V. C.
, and
Prewo
,
K. M.
,
1986
, “
On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites
,”
Scr. Metall.
,
20
(
1
), pp.
43
48
.10.1016/0036-9748(86)90210-3
32.
Ryu
,
H. J.
,
Cha
,
S. I.
, and
Hong
,
S. H.
,
2003
, “
Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites
,”
J. Mater. Res.
,
18
(
12
), pp.
2851
2858
.10.1557/JMR.2003.0398
33.
Hansen
,
N.
,
2004
, “
Hall–Petch Relation and Boundary Strengthening
,”
Scr. Mater.
,
51
(
8
), pp.
801
806
.10.1016/j.scriptamat.2004.06.002
34.
Awaji
,
H.
,
Nishimura
,
Y.
,
Choi
,
S.-M.
,
Takahashi
,
Y.
,
Goto
,
T.
, and
Hashimoto
,
S.
,
2009
, “
Toughening Mechanism and Frontal Process Zone Size of Ceramics
,”
J. Ceram. Soc. Jpn.
,
117
(
1365
), pp.
623
629
.10.2109/jcersj2.117.623
35.
Jiang
,
D.
,
Hong
,
C.
,
Zhong
,
M.
,
Alkhayat
,
M.
,
Weisheit
,
A.
,
Gasser
,
A.
,
Zhang
,
H.
,
Kelbassa
,
I.
, and
Poprawe
,
R.
,
2014
, “
Fabrication of Nano-TiCp Reinforced Inconel 625 Composite Coatings by Partial Dissolution of Micro-TiCp Through Laser Cladding Energy Input Control
,”
Surf. Coat. Technol.
,
249
, pp.
125
131
.10.1016/j.surfcoat.2014.03.057
36.
Hansen
,
N.
,
1977
, “
The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature
,”
Acta Metall.
,
25
(
8
), pp.
863
869
.10.1016/0001-6160(77)90171-7
37.
Pereira
,
J. M.
, and
Lerch
,
B. A.
,
2001
, “
Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications
,”
Int. J. Impact Eng.
,
25
(
8
), pp.
715
733
.10.1016/S0734-743X(01)00018-5
38.
De Jaeger
,
J.
,
Solas
,
D.
,
Baudin
,
T.
,
Fandeur
,
O.
,
Schmitt
,
J.-H.
, and
Rey
,
C.
,
2012
, “
Inconel 718 Single and Multipass Modelling of Hot Forging
,”
Superalloys: 12th International Symposium on Superalloys
, Seven Springs, PA, Sept. 9–13, pp.
663
672
.https://www.researchgate.net/publication/277700684_INCONEL_718_Single_and_Multipass_Modelling_of_Hot_Forging
39.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
, pp.
404
409
.10.1016/j.jallcom.2013.08.183
40.
Hull
,
D.
, and
Bacon
,
D. J.
,
2001
,
Introduction to Dislocations
,
Butterworth-Heinemann
, Pondicherry, India.
41.
Huo
,
H.
, and
Tjong
,
S. C.
,
2007
, “
Corrosion Behavior of Al-Based Composites Containing In-Situ TiB2, Al2O3 and Al3Ti Reinforcements in Aerated 3.5% Sodium Chloride Solution
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
588
593
.10.1002/adem.200700001
42.
Chen
,
F.
,
Ying
,
J.
,
Wang
,
Y.
,
Du
,
S.
,
Liu
,
Z.
, and
Huang
,
Q.
,
2016
, “
Effects of Graphene Content on the Microstructure and Properties of Copper Matrix Composites
,”
Carbon
,
96
, pp.
836
842
.10.1016/j.carbon.2015.10.023
You do not currently have access to this content.