Abstract

Graphene and graphene oxide attract rapidly growing interest as prospective building blocks for nanotechnology applications and composites. Recently, we showed that a small amount of graphene oxide produced significant templating effects on the structure of continuous carbon nanofibers (CNFs). However, the produced nanofibers had significant nonuniformities that could be detrimental to their mechanical properties. Controlled nanofabrication is critical for obtaining uniform, high-quality nanofibers with tunable diameters and properties. Here, we analyze the effects of graphene oxide type, concentration, and processing parameters on the morphology of continuous graphene oxide/polyacrylonitrile nanofibers produced by electrospinning. Four types of graphene oxides with different average nanoparticle sizes were examined, and the effects of electric field and polymer concentration on nanofiber diameters were analyzed. Good-quality nanofibers were produced with up to 2 wt % graphene oxide in polyacrylonitrile. Uniform nanofibers were obtained for solid content above 9 wt % in dimethylformamide (DMF). Composite nanofibers containing graphene oxide nanoparticles exhibited reduced diameters throughout the polyacrylonitrile concentration range before and after carbonization compared to nanofibers prepared from neat polymer. The obtained results open up a pathway for controlled nanofabrication of uniform CNFs with improved structure for a variety of structural and functional applications.

References

1.
van Noorden
,
R.
,
2011
, “
The Trials of New Carbon
,”
Nature
,
469
(
7328
), pp.
14
16
.10.1038/469014a
2.
Compton
,
O. C.
, and
Nguyen
,
S. T.
,
2010
, “
Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials
,”
Small
,
6
(
6
), pp.
711
723
.10.1002/smll.200901934
3.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.10.1038/nature04969
4.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud'Homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat Nano
,
3
(
6
), pp.
327
331
.10.1038/nnano.2008.96
5.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.10.1002/smll.200901480
6.
Potts
,
J. R.
,
Dreyer
,
D. R.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
,
2011
, “
Graphene-Based Polymer Nanocomposites
,”
Polymers
,
52
(
1
), pp.
5
25
.10.1016/j.polymer.2010.11.042
7.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.10.1021/nn9010472
8.
Xu
,
Z.
,
Sun
,
H.
,
Zhao
,
X.
, and
Gao
,
C.
,
2013
, “
Ultrastrong Fibers Assembled From Giant Graphene Oxide Sheets
,”
Adv. Mater.
,
25
(
2
), pp.
188
193
.10.1002/adma.201203448
9.
Xu
,
Z.
, and
Gao
,
C.
,
2011
, “
Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres
,”
Nat. Commun.
,
2
p.
571
.10.1038/ncomms1583
10.
Dong
,
Z.
,
Jiang
,
C.
,
Cheng
,
H.
,
Zhao
,
Y.
,
Shi
,
G.
,
Jiang
,
L.
, and
Qu
,
L.
,
2012
, “
Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers
,”
Adv. Mater.
,
24
(
14
), pp.
1856
1861
.10.1002/adma.201200170
11.
Xu
,
Z.
, and
Gao
,
C.
,
2015
, “
Graphene Fiber: A New Trend in Carbon Fibers
,”
Mater. Today
,
18
(
9
), pp.
480
492
.10.1016/j.mattod.2015.06.009
12.
Meng
,
F.
,
Lu
,
W.
,
Li
,
Q.
,
Byun
,
J.-H.
,
Oh
,
Y.
, and
Chou
,
T.-W.
,
2015
, “
Graphene-Based Fibers: A Review
,”
Adv. Mater.
,
27
(
35
), pp.
5113
5131
.10.1002/adma.201501126
13.
Papkov
,
D.
,
Goponenko
,
A.
,
Compton
,
O. C.
,
An
,
Z.
,
Moravsky
,
A.
,
Li
,
X.-Z.
,
Nguyen
,
S. T.
, and
Dzenis
,
Y. A.
,
2013
, “
Improved Graphitic Structure of Continuous Carbon Nanofibers Via Graphene Oxide Templating
,”
Adv. Funct. Mater.
,
23
(
46
), pp.
5763
5770
.10.1002/adfm.201300653
14.
Dzenis
,
Y. A.
,
2004
, “
Spinning Continuous Fibers for Nanotechnology
,”
Science
,
304
(
5679
), pp.
1917
1919
.10.1126/science.1099074
15.
Papkov
,
D.
,
Beese
,
A. M.
,
Goponenko
,
A.
,
Zou
,
Y.
,
Naraghi
,
M.
,
Espinosa
,
H. D.
,
Saha
,
B.
,
Schatz
,
G. C.
,
Moravsky
,
A.
,
Loutfy
,
R.
,
Nguyen
,
S. T.
, and
Dzenis
,
Y. A.
,
2013
, “
Extraordinary Improvement of the Graphitic Structure of Continuous Carbon Nanofibers Templated With Double Wall Carbon Nanotubes
,”
ACS Nano
,
7
(
1
), pp.
126
142
.10.1021/nn303423x
16.
Hummers
,
W. S.
, and
Offeman
,
R. E.
,
1958
, “
Preparation of Graphitic Oxide
,”
J. Am. Chem. Soc.
,
80
(
6
), p.
1339
.10.1021/ja01539a017
17.
Fong
,
H.
,
Chun
,
I.
, and
Reneker
,
D. H.
,
1999
, “
Beaded Nanofibers Formed During Electrospinning
,”
Polymers
,
40
(
16
), pp.
4585
4592
.10.1016/S0032-3861(99)00068-3
18.
Zhang
,
D.
,
Karki
,
A. B.
,
Rutman
,
D.
,
Young
,
D. P.
,
Wang
,
A.
,
Cocke
,
D.
,
Ho
,
T. H.
, and
Guo
,
Z.
,
2009
, “
Electrospun Polyacrylonitrile Nanocomposite Fibers Reinforced With Fe3O4 Nanoparticles: Fabrication and Property Analysis
,”
Polymers
,
50
(
17
), pp.
4189
4198
.10.1016/j.polymer.2009.06.062
19.
Zong
,
X. H.
,
Kim
,
K.
,
Fang
,
D.
,
Ran
,
S.
,
Hsiao
,
B. S.
,
Chu
,
B.
, and
Hsiao
,
S. H.
,
2002
, “
Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes
,”
Polymers
,
43
(
16
), pp.
4403
4412
.10.1016/S0032-3861(02)00275-6
20.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Zussman
,
E.
, and
Xu
,
H.
,
2007
, “
Electrospinning of Nanofibers From Polymer Solutions and Melts
,”
Adv. Appl. Mech.
, 41, pp.
43
346
.10.1016/S0065-2156(07)41002-X
21.
Reneker
,
D. H.
, and
Yarin
,
A. L.
,
2008
, “
Electrospinning Jets and Polymer Nanofibers
,”
Polymers
,
49
(
10
), pp.
2387
2425
.10.1016/j.polymer.2008.02.002
22.
Greiner
,
A.
, and
Wendorff
,
J. H.
,
2007
, “
Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers
,”
Angew. Chem. Int. Ed.
,
46
(
30
), pp.
5670
5703
.10.1002/anie.200604646
23.
Yamashita
,
Y.
,
Aoki
,
N.
,
Ko
,
F.
, and
Miyake
,
H.
,
2008
, “
Carbonization Conditions for Electrospun Nanofibre of Polyacrylonitrile Copolymer
,”
Indian J. Fibre Text. Res.
,
33
, pp.
345
353
.http://nopr.niscair.res.in/handle/123456789/2024
24.
Gomes
,
D. S.
,
Da Silva
,
A. N. R.
,
Morimoto
,
N. I.
,
Mendes
,
L. T. F.
,
Furlan
,
R.
, and
Ramos
,
I.
,
2007
, “
Characterization of an Electrospinning Process Using Different PAN/DMF Concentrations
,”
Polímeros
,
17
(
3
), pp.
206
211
.10.1590/S0104-14282007000300009
25.
Wang
,
C.
,
Chien
,
H.-S.
,
Hsu
,
C.-H.
,
Wang
,
Y.-C.
,
Wang
,
C.-T.
, and
Lu
,
H.-A.
,
2007
, “
Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures
,”
Macromolecules
,
40
(
22
), pp.
7973
7983
.10.1021/ma070508n
26.
Wang
,
T.
, and
Kumar
,
S.
,
2006
, “
Electrospinning of Polyacrylonitrile Nanofibers
,”
J. Appl. Polym. Sci.
,
102
(
2
), pp.
1023
1029
.10.1002/app.24123
27.
Tang
,
S.
,
Shao
,
C.
,
Liu
,
Y.
, and
Mu
,
R.
,
2010
, “
Electrospun Nanofibers of Poly(Acrylonitrile)/Eu3+ and Their Photoluminescence Properties
,”
J. Phys. Chem. Solids
,
71
(
3
), pp.
273
278
.10.1016/j.jpcs.2009.12.076
28.
Wu
,
X.-F.
,
Salkovskiy
,
Y.
, and
Dzenis
,
Y. A.
,
2011
, “
Modeling of Solvent Evaporation From Polymer Jets in Electrospinning
,”
Appl. Phys. Lett.
,
98
(
22
), p.
223108
.10.1063/1.3585148
29.
He
,
J.-H.
,
Wan
,
Y.-Q.
, and
Yu
,
J.-Y.
,
2008
, “
Effect of Concentration on Electrospun Polyacrylonitrile (PAN) Nanofibers
,”
Fibers Polym.
,
9
(
2
), pp.
140
142
.10.1007/s12221-008-0023-3
30.
Gupta
,
P.
,
Elkins
,
C.
,
Long
,
T. E.
, and
Wilkes
,
G. L.
,
2005
, “
Electrospinning of Linear Homopolymers of Poly(Methyl Methacrylate): Exploring Relationships Between Fiber Formation, Viscosity, Molecular Weight and Concentration in a Good Solvent
,”
Polymers
,
46
(
13
), pp.
4799
4810
.10.1016/j.polymer.2005.04.021
31.
Arinstein
,
A.
,
Liu
,
Y.
,
Rafailovich
,
M.
, and
Zussman
,
E.
,
2011
, “
Shifting of the Melting Point for Semi-Crystalline Polymer Nanofibers
,”
EPL
,
93
(
4
), p.
46001
.10.1209/0295-5075/93/46001
32.
Wan
,
C.
, and
Chen
,
B.
,
2011
, “
Poly(ε-Caprolactone)/Graphene Oxide Biocomposites: Mechanical Properties and Bioactivity
,”
Biomed. Mater.
,
6
(
5
), p.
055010
.10.1088/1748-6041/6/5/055010
33.
Yoon
,
O. J.
,
Jung
,
C. Y.
,
Sohn
,
I. Y.
,
Kim
,
H. J.
,
Hong
,
B.
,
Jhon
,
M. S.
, and
Lee
,
N.-E.
,
2011
, “
Nanocomposite Nanofibers of Poly(d, l-Lactic-Co-Glycolic Acid) and Graphene Oxide Nanosheets
,”
Compos. Part A Appl. Sci. Manuf.
,
42
(
12
), pp.
1978
1984
.10.1016/j.compositesa.2011.08.023
34.
Pant
,
H. R.
,
Park
,
C. H.
,
Tijing
,
L. D.
,
Amarjargal
,
A.
,
Lee
,
D.-H.
, and
Kim
,
C. S.
,
2012
, “
Bimodal Fiber Diameter Distributed Graphene Oxide/Nylon-6 Composite Nanofibrous Mats Via Electrospinning
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
407
, pp.
121
125
.10.1016/j.colsurfa.2012.05.018
35.
Chipara
,
M.
,
Cruz
,
J.
,
Vega
,
E. R.
,
Alarcon
,
J.
,
Mion
,
T.
,
Chipara
,
D. M.
,
Ibrahim
,
E.
,
Tidrow
,
S. C.
, and
Hui
,
D.
,
2012
, “
Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties
,”
J. Nanomater.
, 2012, p. 435412.10.1155/2012/435412
You do not currently have access to this content.