Laser-induced plasma micromachining (LIP-MM) is a novel multimaterial and tool-less micromachining process. It utilizes tightly focused ultrashort laser irradiation to generate plasma through laser-induced dielectric breakdown in a dielectric material. The plasma facilitates material removal through plasma–matter interaction spot through vaporization and ablation. The paper introduces the LIP-MM process, discusses the underlying principles behind plasma generation and machining, and proves its feasibility by describing the experimental conditions under which plasma generation and machining occur. Upon successful commercial realization of this novel process, the key benefits envisaged are micromachining with better accuracy and better surface integrity, minimal subsurface damage, relatively smaller heat-affected zone (HAZ) and low roughness in a wide range of materials including those that are difficult to machine by some of the most successful micromachining processes such as micro-electrodischarge machining (EDM) and laser ablation.

References

1.
Pallav
,
K.
,
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2014
, “
Laser 522 Directed Plasma Micro-Machining (LDPMM) With Magnetic and Optical Control
,” U.S. Patent Filed.
2.
Saxena
,
I.
, and
Ehmann
,
K. F.
,
2014
, “
Multimaterial Capability of Laser Induced Plasma Micromachining
,”
ASME J. Micro Nano–Manuf.
,
2
(
3
), p.
031005
.10.1115/1.4027811
3.
Saxena
,
I.
,
Malhotra
,
R.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High-Speed Fabrication of Microchannels Using Line-Based Laser Induced Plasma Micromachining
,”
ASME J. Micro Nano–Manuf.
,
3
(
2
), p.
021006
.10.1115/1.4029935
4.
Noack
,
J.
, and
Vogel
,
A.
,
1999
, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
,
35
(
8
), pp.
1156
1167
.10.1109/3.777215
5.
Vogel
,
A.
,
Nahen
,
K.
,
Theisen
,
D.
, and
Noack
,
J.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses. I. Optical Breakdown at Threshold and Superthreshold Irradiance
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
847
860
.10.1109/2944.577307
6.
Sacchi
,
C. A.
,
1991
, “
Laser-Induced Electric Breakdown in Water
,”
J. Opt. Soc. Am. B
,
8
(
2
), pp.
337
345
.10.1364/JOSAB.8.000337
7.
Hammer
,
D. X.
,
Thomas
,
R. J.
,
Noojin
,
G. D.
,
Rockwell
,
B. A.
,
Kennedy
,
P. K.
, and
Roach
,
W. P.
,
1996
, “
Experimental Investigation of Ultrashort Pulse Laser-Induced Breakdown Thresholds in Aqueous Media
,”
IEEE J. Quantum Electron.
,
32
(
4
), pp.
670
678
.10.1109/3.488842
8.
Pallav
,
K.
,
2013
,
Laser Induced Plasma Micro-Machining Process (LIP-MM)
, Ph.D. Dissertation,
Northwestern University
,
Evanston, IL
.
9.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Laser Induced Plasma Micro-Machining
,”
ASME
Paper No. MSEC2010-34242, pp. 363-369.
10.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
,
2013
, “
Comparative Assessment of the Laser Induced Plasma Micro-Machining (LIP-MM) and the Ultra-Short Pulsed Laser Ablation Processes
,”
ASME J. Micro Nano–Manuf.
,
2
(
3
), p.
031001
.10.1115/1.4027738
11.
Steen
,
W.
, and
Majumdar
,
J.
,
2005
,
Laser Material Processing
,
Springer
,
London
, Chap. 2.
12.
Vogel
,
A.
,
Schweiger
,
P.
,
Frieser
,
A.
,
Asiyo
,
M. N.
, and
Birngruber
,
R.
,
1990
, “
Intraocular Nd:YAG Laser Surgery: Laser–Tissue Interaction, Damage Range, and Reduction of Collateral Effects
,”
IEEE J. Quantum Electron.
,
26
(
12
), pp.
2240
2260
.10.1109/3.64361
13.
Pallav
,
K.
, and
Ehmann
,
K.
,
2010
, “
Feasibility of Laser Induced Plasma Micro-Machining (LIP-MM)
,”
Precision Assembly Technologies and Systems
,
S.
Ratchev
, ed.,
Springer
,
Boston
, pp.
73
80
.10.1007/978-3-642-11598-1_8
14.
Vogel
,
A.
,
Noack
,
J.
,
Nahen
,
K.
,
Theisen
,
D.
,
Busch
,
S.
,
Parlitz
,
U.
,
Hammer
,
D. X.
,
Noojin
,
G. D.
,
Rockwell
,
B. A.
, and
Birngruber
,
R.
,
1999
, “
Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales
,”
Appl. Phys. B
,
68
(
2
), pp.
271
280
.10.1007/s003400050617
15.
Nagahanumaiah
,
Ramkumar, J.
,
Glumac
,
N.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2009
, “
Characterization of Plasma in Micro-EDM Discharge Using Optical Spectroscopy
,”
J. Manuf. Processes
,
11
(
2
), pp.
82
87
.10.1016/j.jmapro.2009.10.002
16.
Stolarski
,
D. J.
,
Hardman
,
J. M.
,
Bramlette
,
C. M.
,
Noojin
,
G. D.
,
Thomas
,
R. J.
,
Rockwell
,
B. A.
, and
Roach
,
W. P.
,
1995
,
Integrated Light Spectroscopy of Laser-Induced Breakdown in Aqueous Media
,
S. L.
Jacques
, ed.,
Proc. SPIE
, San Jose, CA, Feb. 1, pp.
100
109
.10.1117/12.209873
17.
Jamieson
,
T. A.
,
1981
, “
Thermal Effects in Optical Systems
,”
Opt. Eng.
,
20
(
2
), pp.
156
160
.10.1117/12.7972683
18.
Singh
,
K. P.
,
2004
, “
Electron Acceleration by a Circularly Polarized Laser Pulse in a Plasma
,”
Phys. Plasmas
,
11
(
8
), pp.
3992
3996
.10.1063/1.1765656
19.
Steiger
,
A. D.
, and
Woods
,
C. H.
,
1972
, “
Intensity-Dependent Propagation Characteristics of Circularly Polarized High-Power Laser Radiation in a Dense Electron Plasma
,”
Phys. Rev. A
,
5
(
3
), pp.
1467
1474
.10.1103/PhysRevA.5.1467
20.
Sprangle
,
P.
,
Esarey
,
E.
,
Krall
,
J.
, and
Joyce
,
G.
,
1992
, “
Propagation and Guiding of Intense Laser Pulses in Plasmas
,”
Phys. Rev. Lett.
,
69
(
15
), pp.
2200
2203
.10.1103/PhysRevLett.69.2200
You do not currently have access to this content.