Abstract

Pulsatile pressure at an artery is a collection of harmonics of the heartbeat. This study examines harmonics of pulsatile pressure at different ages and its effect on other pulsatile parameters and waveform-based clinical indices. Based on a vibrating-string model of the arterial tree, wave velocity and characteristic impedance are related to arterial stiffness and radius. Blood velocity, wall shear stress (WSS), and driving force on the left ventricle (LV) are related to pulsatile pressure. Reflection magnitude and return time are related to input impedance. These relations are applied to pulsatile pressure and blood velocity at the ascending aorta (AA) and the carotid artery (CA) at different ages in a database to calculate harmonics of all the pulsatile parameters and reflection magnitude and return time at each harmonic. Harmonics of pulsatile pressure varies with aging and between the two arteries. Reflection magnitude and return time vary between harmonics. While wave reflection manifests the arterial tree (i.e., arterial stiffness and radius) and termination, harmonics of pulsatile pressure is a combination of the LV, the arterial tree, and termination. Harmonics of pulsatile pressure dictates harmonics of WSS and affects endothelial function. Harmonics of pulsatile pressure needs to serve as an independent clinical index indicative of the LV function and endothelial function. Reflection magnitude and return time of the 1st harmonic of pulsatile pressure serve as clinical indices indicative of arterial stiffness and radius.

References

1.
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
2018
, “
Uniform Tube Models With Single Reflection Site Do Not Explain Aortic Wave Travel and Pressure Wave Shape
,”
Physiol. Meas.
,
39
(
12
), p.
124006
.10.1088/1361-6579/aaf3dd
2.
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
2012
, “
Magnitude and Return Time of the Reflected Wave: The Effects of Large Artery Stiffness and Aortic Geometry
,”
J. Hypertens.
,
30
(
5
), pp.
932
939
.10.1097/HJH.0b013e3283524932
3.
Mitchell
,
G. F.
,
van Buchem
,
M. A.
,
Sigurdsson
,
S.
,
Gotal
,
J. D.
,
Jonsdottir
,
M. K.
,
Kjartansson
,
Ó.
,
Garcia
,
M.
, et al.,
2011
, “
Arterial Stiffness, Pressure and Flow Pulsatility and Brain Structure and Function: The Age, Gene/Environment Susceptibility–Reykjavik Study
,”
Brain
,
134
(
11
), pp.
3398
3407
.10.1093/brain/awr253
4.
Torjesen
,
A. A.
,
Wang
,
N.
,
Larson
,
M. G.
,
Hamburg
,
N. M.
,
Vita
,
J. A.
,
Levy
,
D.
,
Benjamin
,
E. J.
,
Vasan
,
R. S.
, and
Mitchell
,
G. F.
,
2014
, “
Forward and Backward Wave Morphology and Central Pressure Augmentation in Men and Women in the Framingham Heart Study
,”
Hypertension
,
64
(
2
), pp.
259
265
.10.1161/HYPERTENSIONAHA.114.03371
5.
Kaya
,
M.
,
Balasubramanian
,
V.
, and
Li
,
J. K.
,
2022
, “
Inadequacy of Augmentation Index for Monitoring Arterial Stiffness: Comparison With Arterial Compliance and Other Hemodynamic Variables
,”
Cardiovasc. Eng. Technol.
,
13
(
4
), pp.
590
602
.10.1007/s13239-021-00605-z
6.
Hughes
,
A. D.
,
Park
,
C.
,
Davies
,
J.
,
Francis
,
D.
,
McG Thom
,
S. A.
,
Mayet
,
J.
, and
Parker
,
K. H.
,
2013
, “
Limitations of Augmentation Index in the Assessment of Wave Reflection in Normotensive Healthy Individuals
,”
PLoS One
,
8
(
3
), p.
e59371
.10.1371/journal.pone.0059371
7.
Heusinkveld
,
M. H. G.
,
Delhaas
,
T.
,
Lumens
,
J.
,
Huberts
,
W.
,
Spronck
,
B.
,
Hughes
,
A. D.
, and
Reesink
,
K. D.
,
2019
, “
Augmentation Index is Not a Proxy for Wave Reflection Magnitude: Mechanistic Analysis Using a Computational Model
,”
J. Appl. Physiol.
,
127
(
2
), pp.
491
500
.10.1152/japplphysiol.00769.2018
8.
Du
,
S.
,
Liu
,
W.
,
Yao
,
Y.
,
Sun
,
G.
,
He
,
Y.
,
Alastruey
,
J.
,
Xu
,
L.
,
Yao
,
Y.
, and
Qian
,
W.
,
2022
, “
Reconstruction of the Aortic Pressure Waveform Using a Two-Level Adaptive Transfer Function Strategy
,”
Measurement
,
204
, p.
112111
.10.1016/j.measurement.2022.112111
9.
Hitomi
,
Y.
,
Masaki
,
N.
,
Ishinoda
,
Y.
,
Kagami
,
K.
,
Yasuda
,
R.
,
Toya
,
T.
,
Namba
,
T.
,
Nagatomo
,
Y.
,
Takase
,
B.
, and
Adachi
,
T.
,
2022
, “
Effectiveness of Pulsatility Index of Carotid Doppler Ultrasonography to Predict Cardiovascular Events
,”
J. Med. Ultrason.
,
49
(
1
), pp.
95
103
.10.1007/s10396-021-01164-5
10.
Chuang
,
S. Y.
,
Cheng
,
H. M.
,
Bai
,
C. H.
,
Yeh
,
W. T.
,
Chen
,
J. R.
, and
Pan
,
W. H.
,
2016
, “
Blood Pressure, Carotid Flow Pulsatility, and the Risk of Stroke: A Community-Based Study
,”
Stroke
,
47
(
9
), pp.
2262
2268
.10.1161/STROKEAHA.116.013207
11.
Ozari
,
H. O.
,
Oktenli
,
C.
,
Celik
,
S.
,
Tangi
,
F.
,
Ipcioglu
,
O.
,
Terekeci
,
H. M.
,
Top
,
C.
,
Uzun
,
M.
,
Sanisoglu
,
Y. S.
, and
Nalbant
,
S.
,
2012
, “
Are Increased Carotid Artery Pulsatility and Resistance Indexes Early Signs of Vascular Abnormalities in Young Obese Males?
,”
J. Clin. Ultrasound
,
40
(
6
), pp.
335
340
.10.1002/jcu.21927
12.
Heffernan
,
K. S.
,
Spartano
,
N. L.
,
Augustine
,
J. A.
,
Lefferts
,
W. K.
,
Hughes
,
W. E.
,
Mitchell
,
G. F.
,
Jorgensen
,
R. S.
, and
Gump
,
B. B.
,
2015
, “
Carotid Artery Stiffness and Hemodynamic Pulsatility During Cognitive Engagement in Healthy Adults: A Pilot Investigation
,”
Am. J. Hypertens.
,
28
(
5
), pp.
615
622
.10.1093/ajh/hpu198
13.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.10.1093/cvr/cvt044
14.
Avrahami
,
I.
,
Kersh
,
D.
, and
Liberzon
,
A.
,
2016
, “
Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms
,”
PLoS One
,
11
(
11
), p.
e0166426
.10.1371/journal.pone.0166426
15.
Liu
,
H. B.
,
Yuan
,
W. X.
,
Qin
,
K. R.
, and
Hou
,
J.
,
2015
, “
Acute Effect of Cycling Intervention on Carotid Arterial Hemodynamics: Basketball Athletes Versus Sedentary Controls
,”
Biomed. Eng. Online
,
14
(
S1
), p.
S17
.10.1186/1475-925X-14-S1-S17
16.
Qureshi
,
M. U.
,
Colebank
,
M. J.
,
Schreier
,
D. A.
,
Tabima
,
D. M.
,
Haider
,
M. A.
,
Chesler
,
N. C.
, and
Olufsen
,
M. S.
,
2018
, “
Characteristic Impedance: Frequency or Time Domain Approach?
,”
Physiol. Meas.
,
39
(
1
), p.
014004
.10.1088/1361-6579/aa9d60
17.
Willemet
,
M.
, and
Alastruey
,
J.
,
2015
, “
Arterial Pressure and Flow Wave Analysis Using Time-Domain 1-D Hemodynamics
,”
Ann. Biomed. Eng
,
43
(
1
), pp.
190
206
.10.1007/s10439-014-1087-4
18.
Mynard
,
J. P.
,
Kondiboyina
,
A.
,
Kowalski
,
R.
,
Cheung
,
M. M. H.
, and
Smolich
,
J. J.
,
2020
, “
Measurement, Analysis and Interpretation of Pressure/Flow Waves in Blood Vessels
,”
Front. Physiol.
,
11
, p.
1085
.10.3389/fphys.2020.01085
19.
Hao
,
Z.
,
2023
, “
A Vibrating-String Model for Closed-Loop Wave Transmission and Reflection Between the Aorta and Periphery
,”
ASME J Med. Diagn.
,
6
(
4
), p.
041001
.10.1115/1.4062078
20.
Chang
,
C. W.
,
Liao
,
K. M.
,
Chang
,
Y. T.
,
Wang
,
S. H.
,
Chen
,
Y. C.
, and
Wang
,
G. C.
,
2019
, “
Fourth Harmonic of Radial Pulse Wave Predicts Adverse Cardiac Events in Asymptomatic Patients With Type 2 Diabetes
,”
J. Diabetes Complications
,
33
(
6
), pp.
413
416
.10.1016/j.jdiacomp.2019.03.002
21.
Hsiu
,
H.
,
Liu
,
J. C.
,
Yang
,
C. J.
,
Chen
,
H. S.
,
Wu
,
M. S.
,
Hao
,
W. R.
,
Lee
,
K. Y.
, et al.,
2022
, “
Discrimination of Vascular Aging Using the Arterial Pulse Spectrum and Machine-Learning Analysis
,”
Microvasc. Res.
,
139
, p.
104240
.10.1016/j.mvr.2021.104240
22.
Chang
,
C. W.
,
Liao
,
K. M.
,
Chang
,
Y. T.
,
Wang
,
S. H.
,
Chen
,
Y. C.
, and
Wang
,
G. C.
,
2018
, “
The First Harmonic of Radial Pulse as an Early Predictor of Silent Coronary Artery Disease and Adverse Cardiac Events in Type 2 Diabetic Patients
,”
Cardiol. Res. Pract.
,
2018
, pp.
1
9
.10.1155/2018/5128626
23.
Huang
,
Y. C.
,
Chang
,
Y. H.
,
Cheng
,
S. M.
,
Lin
,
S. J.
,
Lin
,
C. J.
, and
Su
,
Y. C.
,
2019
, “
Applying Pulse Spectrum Analysis to Facilitate the Diagnosis of Coronary Artery Disease
,”
Evidence-Based Complementary Altern. Med.
,
2019
, pp.
1
10
.10.1155/2019/2709486
24.
Lin
,
S. K.
,
Hsiu
,
H.
,
Chen
,
H. S.
, and
Yang
,
C. J.
,
2021
, “
Classification of Patients With Alzheimer's Disease Using the Arterial Pulse Spectrum and a Multilayer-Perceptron Analysis
,”
Sci. Rep.
,
11
(
1
), p.
8882
.10.1038/s41598-021-87903-7
25.
Chen
,
P.-J.
,
Wu
,
H.-K.
,
Hsu
,
P.-C.
,
Lo
,
L.-C.
,
Chang
,
H.-H.
, and
Worsnop
,
C.
,
2020
, “
Effects of Five Daily Activities on Harmonic Analysis of the Radial Pulse
,”
Evidence-Based Complementary Altern. Med.
,
2020
, pp.
1
5
.10.1155/2020/6095674
26.
Baeyens
,
N.
,
Bandyopadhyay
,
C.
,
Coon
,
B. G.
,
Yun
,
S.
, and
Schwartz
,
M. A.
,
2016
, “
Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease
,”
J. Clin. Invest.
,
126
(
3
), pp.
821
828
.10.1172/JCI83083
27.
Feaver
,
R. E.
,
Gelfand
,
B. D.
, and
Blackman
,
B. R.
,
2013
, “
Human Haemodynamic Frequency Harmonics Regulate the Inflammatory Phenotype of Vascular Endothelial Cells
,”
Nat. Commun.
,
4
(
1
), p.
1525
.10.1038/ncomms2530
28.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
,
Bürki
,
E.
,
Meister
,
J.-J.
, and
Brunner
,
H. R.
,
1995
, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler. Thromb. Vasc. Biol.
,
15
(
10
), pp.
1781
1786
.10.1161/01.ATV.15.10.1781
29.
Charlton
,
P. H.
,
Mariscal
,
H. J.
,
Vennin
,
S.
,
Li
,
Y.
,
Chowienczyk
,
P.
, and
Alastruey
,
J.
,
2019
, “
Modelling Arterial Pulse Waves in Healthy Ageing: A Database for in Silico Evaluation of Haemodynamics and Pulse Wave Indices
,”
Am. J. Physiol. Heart Circ. Physiol.
,
317
(
5
), pp.
H1062
H1085
.10.1152/ajpheart.00218.2019
30.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
, “
Fundamentals of Acoustics
,” 4th ed.,
Wiley Inc
.,
Hoboken, NJ
.
31.
Raichel
,
D. R.
,
2006
, The Science and Applications of Acoustics,
Springer Science & Business Media, Berlin
.
32.
Zhu
,
Q.
,
Tian
,
X.
,
Wong
,
C. W.
, and
Wu
,
M.
,
2021
, “
Learning Your Heart Actions From Pulse: ECG Waveform Reconstruction From PPG
,”
IEEE Internet Things J.
,
8
(
23
), pp.
16734
16748
.10.1109/JIOT.2021.3097946
33.
Tokunaga
,
T.
,
Mori
,
K.
,
Kadowaki
,
H.
, and
Saito
,
T.
,
2020
, “
Study on Natural Vibration Characteristics Based on the Coupled Wave Theory of Spring Supported Elastic Pipes and Fluids
,”
ASME
Paper No. V005T05A076. 10.1115/V005T05A076
34.
Chesler
,
N. C.
,
Roldan
,
A.
,
Vanderpool
,
R. R.
, and
Naeije
,
R.
,
2009
, “
How to Measure Pulmonary Vascular and Right Ventricular Function
,”
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
, 2009, pp.
177
–1
80
.10.1109/IEMBS.2009.5333835
35.
Wang
,
S. H.
,
Hsu
,
T. L.
,
Jan
,
M. Y.
,
Wang
,
Y. Y. L.
, and
Wang
,
W. K.
,
2009
, “
Age-Related Changes in Specific Harmonic Indices of Pressure Pulse Waveform
,”
13th International Conference on Biomedical Engineering
,
Lim
,
C. T.
, and
Goh
,
J. C. H.
eds., Vol.
23
,
Springer
,
Berlin, Heidelberg
, pp.
183
185
.10.1007/978-3-540-92841-6
You do not currently have access to this content.