Abstract

The number of total glossectomy cases in the United States is seeing an increasing trend as per the nationwide inpatient sample database. Patients, who have undergone such aggressive surgical procedures, have extensive limitations in performing basic oral functions such as swallowing (deglutition), eating, and speaking. Current rehabilitation prostheses do little in restoring the functionality of the original tongue. This is true especially in deglutition, which is necessary to transfer a bolus to the esophagus. Such patients need advanced prosthetic devices and through this research, investigations into potential solutions for prosthetic tongues to aid in deglutition were carried out. Different designs were considered and based on a decision matrix, pneumatic networks (PneuNets) were adopted as the foundational basis for generating prosthetic tongue designs. Several prototypes were fabricated that used the Fused Filament Deposition process for producing the mold and silicone Eco-flex 00-30 for producing the mechanism. The resulting mechanism with dimensions 2.4 in. × 1.8 in. × 0.24 in. was powered using pneumatic input and kinematic data was collected. The experiments carried out showed potential in the concept but at the same time, there were challenges related to validating the kinematics and in the transfer of the bolus due to uncontrolled silicone expansions. Details from the literature review, design iterations, simulations, validation processes, manufacturing challenges, and conclusions will be discussed in-depth in this paper.

References

1.
Burck
,
J. M.
,
Bigelow
,
J. D.
, and
Harshbarger
,
S. D.
,
2011
, “
Revolutionizing Prosthetics: Systems Engineering Challenges and Opportunities
,”
Johns Hopkins APL Tech. Dig.
,
30
(
3
), p.
12
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6772&rep=rep1&type=pdf
2.
Gohd
,
C.
,
2018
, “
Florida Man Becomes First Person to Live With Advanced Mind-Controlled Robotic Arm
,” Futurism, accessed Feb. 3, https://futurism.com/mind-controlled-robotic-arm-johnny-matheny
3.
Medical Expo
,
2018
, “
Organ Care System by Transmedics
,” Medical Expo, accessed Oct. 25, http://trends.medicalexpo.com/project-45668.html
4.
Ballingall
,
A.
,
2011
, “
Heart in a Box: Will a New Technology Extend the Six-Hour Transportation Time Limit for Heart Transplants?
,” Maclean's, Gale Academic OneFile, Nov. 21, p. 68+, https://link.gale.com/apps/doc/A273420100/AONE?u=mlin_c_worpoly&sid=bookmark-AONE&xid=aa59675e
5.
Neelakantan
,
V.
,
Shetkar
,
G. S.
, and
Kekatpure
,
V. D.
,
2020
, “
Total Glossectomy: Technique Review
,”
J. Head Neck Phys. Surg.
,
8
(
1
), pp.
3
7
.10.4103/jhnps.jhnps_23_20
6.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
,
2018
, “
Cancer Statistics, 2018
,”
CA: A Cancer J. Clin.
,
68
(
1
), pp.
7
30
.10.3322/caac.21442
7.
NIH
,
2018
, “
Cancer Stat Facts: Oral Cavity and Pharynx Cancer
,” National Institutes of Health, Washington, DC, accessed Oct. 17, https://seer.cancer.gov/statfacts/html/oralcav.html
8.
Hamamoto
,
Y.
,
Nagasao
,
T.
,
Kogure
,
T.
,
Tamai
,
M.
, and
Tanaka
,
Y.
,
2015
, “
The Double-Tongue Method: A New Reconstruction Technique for Oral Floor Reconstruction After Total Glossectomy
,”
J. Plast., Reconstr. Aesth. Surg.
,
68
(
11
), pp.
1624
1626
.10.1016/j.bjps.2015.07.023
9.
Selber
,
J. C.
, and
Robinson
,
J.
,
2014
, “
The Manta Ray Flap: A Technique for Total Glossectomy Reconstruction
,”
Plast. Reconstr. Surg.
,
134
(
2
), pp.
341e
344e
.10.1097/PRS.0000000000000315
10.
Longo
,
B.
,
Pagnoni
,
M.
,
Ferri
,
G.
,
Morello
,
R.
, and
Santanelli
,
F.
,
2013
, “
The Mushroom-Shaped Anterolateral Thigh Perforator Flap for Subtotal Tongue Reconstruction
,”
Plast. Reconstr. Surg.
,
132
(
3
), pp.
656
665
.10.1097/PRS.0b013e31829acf84
11.
Carvalho
,
V. D.
, and
Sennes
,
L. U.
,
2016
, “
Speech and Swallowing Data in Individual Patients Who Underwent Glossectomy After Prosthetic Rehabilitation
,”
Int. J. Dent.
,
2016
, pp.
1
11
.10.1155/2016/6548014
12.
Alhajj
,
M. N.
,
Ismail
,
I. A.
, and
Khalifa
,
N.
,
2016
, “
Maxillary Obturator Prosthesis for a Hemimaxillectomy Patient: A Clinical Case Report
,”
Saudi J. Dental Res.
,
7
(
2
), pp.
153
159
.10.1016/j.sjdr.2016.03.001
13.
Sabouri
,
A. A.
,
Safari
,
A.
,
Gharechahi
,
J.
, and
Esmailzadeh
,
S.
,
2012
, “
Prosthodontic Rehabilitation for Total Glossectomy With a Magnetic Detachable Mandibular Tongue Prosthesis: A Clinical Report
,”
J. Prosthodontics Implant, Esthetic Reconstr. Dent.
,
21
(
5
), pp.
404
407
.10.1111/j.1532-849X.2012.00854.x
14.
Penn
,
M.
,
Grossmann
,
Y.
,
Shifman
,
A.
, and
Taicher
,
S.
,
2007
, “
Implant-Retained Feeding Aid Prosthesis for a Patient Following Total Glossectomy and Laryngectomy: A Clinical Report
,”
J. Prosth. Dent.
,
97
(
5
), pp.
261
265
.10.1016/j.prosdent.2007.03.009
15.
Bhirangi
,
P.
,
Somani
,
P.
,
Dholam
,
K. P.
, and
Bachher
,
G.
,
2012
, “
Technical Considerations in Rehabilitation of an Edentulous Total Glossectomy Patient
,”
Int. J. Dent.
,
2012
, pp.
1
4
.10.1155/2012/125036
16.
Haisfield-Wolfe
,
M. E.
,
McGuire
,
D. B.
,
Soeken
,
K.
,
Geiger-Brown
,
J.
, and
De Forge
,
B. R.
,
2009
, “
Prevalence and Correlates of Depression Among Patients With Head and Neck Cancer: A Systematic Review of Implications for Research
,”
Oncol. Nursing Forum
,
36
(
3
), pp.
E104
E125
.10.1188/09.ONF.E107-E125
17.
OpenStax College
,
2018
, “
Axial Muscles of the Head, Neck, and Back | Anatomy and Physiology I
,” Lumen, accessed Oct. 5, https://courses.lumenlearning.com/ap1/chapter/axial-muscles-of-the-head-neck-and-back/
18.
Tasko
,
S. M.
,
Kent
,
R. D.
, and
Westbury
,
J. R.
,
2002
, “
Variability in Tongue Movement Kinematics During Normal Liquid Swallowing
,”
Dysphagia
,
17
(
2
), pp.
126
138
.10.1007/s00455-001-0112-6
19.
Ono
,
T.
,
Hori
,
K.
, and
Nokubi
,
T.
,
2004
, “
Pattern of Tongue Pressure on Hard Palate During Swallowing
,”
Dysphagia
,
19
(
4
), pp.
259
264
.10.1007/s00455-004-0010-9
20.
Kawamura
,
T.
,
Tandai
,
T.
, and
Takanobu
,
H.
,
2005
, “
Mechanism and Control of Tongue Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, AB, Canada, Aug. 2–6, pp.
1041
1046
.10.1109/IROS.2005.1545513
21.
Lu
,
X.
,
Xu
,
W.
, and
Li
,
X.
,
2017
, “
A Soft Robotic Tongue—Mechatronic Design and Surface Reconstruction
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2102
2110
.10.1109/TMECH.2017.2748606
22.
Yamakita
,
T.
,
Obokawa
,
Y.
,
Eguchi
,
K.
,
Ishii
,
H.
, and
Taknishi
,
A.
,
2010
, “
Development of Flexible Actuator for Humanoid -1st Report: Proposal of Hardware Design to Represent Human Muscle and Automatic Exploration Method
,”
Proceedings of the 28th Annual Conference of the Robotics Society of Japan
, Nagoya, Japan, Sept. 22–24.
23.
Fukui
,
K.
,
Ishikawa
,
Y.
,
Shintaku
,
E.
,
Honda
,
M.
, and
Takanishi
,
A.
,
2012
, “
Production of Various Vocal Cord Vibrations Using a Mechanical Model for an Anthropomorphic Talking Robot
,”
Adv. Rob.
,
26
(
1–2
), pp.
105
120
.10.1163/016918611X607392
24.
Fukui
,
K.
,
Ishikawa
,
Y.
,
Ohno
,
K.
,
Sakakibara
,
N.
,
Honda
,
M.
, and
Takanishi
,
A.
,
2009
, “
Three Dimensional Tongue With Liquid Sealing Mechanism for Improving Resonance on an Anthropomorphic Talking Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15, pp.
5456
5462
.10.1109/IROS.2009.5353983
25.
Michel
,
C.
,
Velasco
,
C.
,
Salgado-Montejo
,
A.
, and
Spence
,
C.
,
2014
, “
The Butcher's Tongue Illusion
,”
Perception
,
43
(
8
), pp.
818
824
.10.1068/p7733
26.
Tanzawa
,
T.
,
Futaki
,
K.
,
Tani
,
C.
,
Hasegawa
,
T.
,
Yamamoto
,
M.
,
Miyazaki
,
T.
, and
Maki
,
K.
,
2012
, “
Introduction of a Robot Patient Into Dental Education
,”
Eur. J. Dental Educ.
,
16
(
1
), pp.
e195
e199
.10.1111/j.1600-0579.2011.00697.x
27.
Hofe
,
R.
, and
Moore
,
R. K.
,
2008
, “
Towards an Investigation of Speech Energetics Using ‘AnTon’: An Animatronic Model of a Human Tongue and Vocal Tract
,”
Connect. Sci.
,
20
(
4
), pp.
319
336
.10.1080/09540090802413251
28.
Ilievski
,
F.
,
Chen
,
X.
,
Mazzeo
,
A. D.
,
Whitesides
,
G. M.
,
Shepherd
,
R. F.
,
Martinez
,
R. V.
,
Choi
,
W. J.
,
Kwok
,
S. W.
,
Morin
,
S. A.
,
Stokes
,
A.
, and
Nie
,
Z.
,
2014
, “
Soft Robotic Actuators
,” U.S. Patent No. 20140109560A1.
29.
Mitra
,
A.
,
Choudhary
,
S.
,
Garg
,
H.
, and
Jagadeesh
,
H. G.
,
2014
, “
Maxillofacial Prosthetic Materials-an Inclination Towards Silicones
,”
J. Clin. Diagn. Res. JCDR
,
8
(
12
), p.
ZE08
.10.7860/JCDR/2014/9229.5244
30.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
, “
A Multi-Gait Soft Robot Supporting Information
,” Harvard University, Cambridge, MA, accessed Apr. 21, 2019, https://gmwgroup.harvard.edu/files/gmwgroup/files/1135_01.pdf
31.
Cao
,
J.
,
Qin
,
L.
,
Lee
,
H. P.
, and
Zhu
,
J.
,
2017
, “
Development of a Soft Untethered Robot Using Artificial Muscle Actuators
,”
SPIE Paper No. 10163.
32.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.10.1177/0278364915592961
33.
Oguntos
,
V.
,
2019
, “
Low Cost Electro-Pneumatic Circuit for Soft Robots
,” accessed Apr. 21, https://softroboticstoolkit.com/low-cost-ep-circuit
34.
Brown
,
D.
,
2019
, “
Tracker: Video Analysis and Modeling Tool
,” accessed Apr. 28, http://physlets.org/tracker/
35.
[
Standring
,
S.
,
2015
,
Gray's Anatomy E-Book: The Anatomical Basis of Clinical Practice
,
Elsevier Health Sciences
, Amsterdam, The Netherlands.
36.
Docherty
,
N.
,
2012
, “
Netter's Head and Neck Anatomy for Dentistry
,”
Brit. Dental J.
,
212
(
11
), pp.
567
568
.10.1038/sj.bdj.2012.517
You do not currently have access to this content.