Abstract

Radio frequency ablation (RFA) of the medial branch nerve is a widely used therapeutic intervention for back pain originating from the facet joint. However, multifidus denervation is a well-known adverse effect of this RFA procedure. Computational simulations of RFA can be used to design a new multifidus-sparing RFA procedure for facet joint pain. Unfortunately, there is not a computational model available for RFA of porcine spines (a common animal model for the translation of spinal treatments). The objective of this study is to develop and verify a computational model for bipolar radio frequency ablation of porcine spine muscle. To do this, the electrical and thermal conductivity properties were measured over a temperature range of 2090°C in ex vivo porcine spinal. A proportional, integral, and derivative (PID) controlled finite element (FE) model was developed and tuned to simulate the ablation process. Finally, tissue temperatures from simulations and experimental ablations were compared. Thermal conductivity values of spinal muscle ranged from 0.33W/mK to 0.57W/mK. Similarly, electrical conductivity varied from 0.36S/m to 1.28S/m. The tuned PID parameters for temperature-controlled model were KP=40, Ki=0.01, and Kd=0. A close agreement between experimental measurements of tissue temperature and simulations were observed in the uncertainty range with R-squared values between 0.88 and 0.98. The model developed in this study is a valuable tool for preclinical studies exploring new RFA methods of spinal nerves.

References

1.
Guo
,
H.-R.
,
Tanaka
,
S.
,
Cameron
,
L. L.
,
Seligman
,
P. J.
,
Behrens
,
V. J.
,
Ger
,
J.
,
Wild
,
D. K.
, and
Putz-Anderson
,
V.
,
1995
, “
Back Pain Among Workers in the United States: National Estimates and Workers at High Risk
,”
Am. J. Ind. Med.
,
28
(
5
), pp.
591
602
.10.1002/ajim.4700280504
2.
Katz
,
J. N.
,
2006
, “
Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences
,”
J. Bone Jt. Surg., Am.
88
(
Suppl. 2
), pp.
21
24
10.2106/JBJS.E.01273.
3.
Manchikanti
,
L.
,
Staats
,
P. S.
,
Singh
,
V.
,
Schultz
,
D. M.
,
Vilims
,
B. D.
,
Jasper
,
J. F.
,
Kloth
,
D. S.
,
Trescot
,
A. M.
,
Hansen
,
H. C.
, and
Falasca
,
T. D.
,
2003
, “
Evidence-Based Practice Guidelines for Interventional Techniques in the Management of Chronic Spinal Pain
,”
Pain Physician
,
6
(
1
), pp.
3
81
.10.36076/ppj.2003/6/3
4.
Smuck
,
M.
,
Crisostomo
,
R. A.
,
Demirjian
,
R.
,
Fitch
,
D. S.
,
Kennedy
,
D. J.
, and
Geisser
,
M. E.
,
2015
, “
Morphologic Changes in the Lumbar Spine After Lumbar Medial Branch Radiofrequency Neurotomy: A Quantitative Radiological Study
,”
Spine J.
,
15
(
6
), pp.
1415
1421
.10.1016/j.spinee.2013.06.096
5.
Kavita
,
N.
,
Kimberly
,
A.
, and
Manchikanti
,
L.
,
2008
, “
Age-Related Prevalence of Facet-Joint Involvement in Chronic Neck and Low Back Pain
,”
Pain Physician
,
11
(
1
), pp.
67
75
.10.36076/ppj.2008/11/67
6.
Manchikanti
,
L.
,
Boswell
,
M. V.
,
Singh
,
V.
,
Pampati
,
V.
,
Damron
,
K. S.
, and
Beyer
,
C. D.
,
2004
, “
Prevalence of Facet Joint Pain in Chronic Spinal Pain of Cervical, Thoracic, and Lumbar Regions
,”
BMC Musculoskeletal Disord.
,
5
(
1
), pp.
1
7
. 10.1186/1471-2474-5-15
7.
Manchukonda
,
R.
,
Manchikanti
,
K. N.
,
Cash
,
K. A.
,
Pampati
,
V.
, and
Manchikanti
,
L.
,
2007
, “
Facet Joint Pain in Chronic Spinal Pain: An Evaluation of Prevalence and False-Positive Rate of Diagnostic Blocks
,”
Clin. Spine Surg.
,
20
(
7
), pp.
539
545
.10.1097/BSD.0b013e3180577812
8.
Yang
,
K. H.
, and
King
,
A. I.
,
1984
, “
Mechanism of Facet Load Transmission as a Hypothesis for Low-Back Pain
,”
Spine
,
9
(
6
), pp.
557
565
.10.1097/00007632-198409000-00005
9.
Cavanaugh
,
J. M.
,
Lu
,
Y.
,
Chen
,
C.
, and
Kallakuri
,
S.
,
2006
, “
Pain Generation in Lumbar and Cervical Facet Joints
,”
J. Bone Jt. Surg., Am.
88
(
Suppl. 2
), pp.
63
67
. 10.2106/JBJS.E.01411
10.
Gossner
,
J.
,
2011
, “
The Lumbar Multifidus Muscles Are Affected by Medial Branch Interventions for Facet Joint Syndrome: Potential Problems and Proposal of a Pericapsular Infiltration Technique
,”
Am. J. Neuroradiology
,
32
(
11
), p.
E213
.10.3174/ajnr.A2901
11.
Hong
,
K.
, and
Georgiades
,
C.
,
2010
, “
Radiofrequency Ablation: Mechanism of Action and Devices
,”
J. Vasc. Interventional Radiol.
,
21
(
8
), pp.
S179
S186
.10.1016/j.jvir.2010.04.008
12.
Knavel
,
E. M.
, and
Brace
,
C. L.
,
2013
, “
Tumor Ablation: Common Modalities and General Practices
,”
Tech. Vasc. Interventional Radiol.
,
16
(
4
), pp.
192
200
.10.1053/j.tvir.2013.08.002
13.
Dreyfuss
,
P.
,
Halbrook
,
B.
,
Pauza
,
K.
,
Joshi
,
A.
,
McLarty
,
J.
, and
Bogduk
,
N.
,
2000
, “
Efficacy and Validity of Radiofrequency Neurotomy for Chronic Lumbar Zygapophysial Joint Pain
,”
Spine
,
25
(
10
), pp.
1270
1277
.10.1097/00007632-200005150-00012
14.
Dreyfuss
,
P.
,
Stout
,
A.
,
Aprill
,
C.
,
Pollei
,
S.
,
Johnson
,
B.
, and
Bogduk
,
N.
,
2009
, “
The Significance of Multifidus Atrophy After Successful Radiofrequency Neurotomy for Low Back Pain
,”
PMR
,
1
(
8
), pp.
719
722
.10.1016/j.pmrj.2009.05.014
15.
Bonython
,
M.
,
Nottage
,
T.
,
Xu
,
L.
,
Zotti
,
M.
,
Fisher
,
T.
, and
Selby
,
M.
,
2019
, “
Magnetic Resonance Imaging Morphology of Lumbar Paraspinal Muscles Following Successful Bilateral Facet Joint Denervation
,”
European Congress of Radiology-2019 ASM
, Auckland, New Zealand, Oct.
17
20
.https://www.researchgate.net/publication/335505559_Magnetic_resonance_imaging_morphology_of_lumbar_paraspinal_muscles_following_successful_bilateral_facet_joint_denervation
16.
Danneels
,
L. A.
,
Vanderstraeten
,
G. G.
,
Cambier
,
D. C.
,
Witvrouw
,
E. E.
,
De Cuyper
,
H. J.
, and
Danneels
,
L.
,
2000
, “
CT Imaging of Trunk Muscles in Chronic Low Back Pain Patients and Healthy Control Subjects
,”
Eur. Spine J.
,
9
(
4
), pp.
266
272
.10.1007/s005860000190
17.
Bogduk
,
N.
,
Wilson
,
A. S.
, and
Tynan
,
W.
,
1982
, “
The Human Lumbar Dorsal Rami
,”
J. Anat.
,
134
(
Pt 2
), pp.
383
397
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167925/
18.
Cosman
,
E. R.
, Jr.
,
Dolensky
,
J. R.
, and
Hoffman
,
R. A.
,
2014
, “
Factors That Affect Radiofrequency Heat Lesion Size
,”
Pain Med.
,
15
(
12
), pp.
2020
2036
.10.1111/pme.12566
19.
Nakada
,
S. Y.
,
Jerde
,
T. J.
,
Warner
,
T. F.
,
Wright
,
A. S.
,
Haemmerich
,
D.
,
Mahvi
,
D. M.
, and
Lee
,
F. T.
, Jr.
,
2003
, “
Bipolar Radiofrequency Ablation of the Kidney: Comparison With Monopolar Radiofrequency Ablation
,”
J. Endourology
,
17
(
10
), pp.
927
933
.10.1089/089277903772036316
20.
Ekstrand
,
V.
,
Wiksell
,
H.
,
Schultz
,
I.
,
Sandstedt
,
B.
,
Rotstein
,
S.
, and
Eriksson
,
A.
,
2005
, “
Influence of Electrical and Thermal Properties on RF Ablation of Breast Cancer: Is the Tumour Preferentially Heated?
,”
BioMed. Eng. OnLine
,
4
(
1
), pp.
1
16
.10.1186/1475-925X-4-41
21.
Chang
,
I.
,
2003
, “
Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity
,”
BioMed. Eng. Online
,
2
(
1
), pp.
1
18
.10.1186/1475-925X-2-12
22.
Watanabe
,
H.
,
Yamazaki
,
N.
,
Kobayashi
,
Y.
,
Miyashita
,
T.
,
Hashizume
,
M.
, and
Fujie
,
M. G.
,
2010
, “
Temperature Dependence of Thermal Conductivity of Liver Based on Various Experiments and a Numerical Simulation for RF Ablation
,”
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
,
Buenos Aires, Argentina
, Aug. 31–Sept. 4, pp.
3222
3228
.10.1109/IEMBS.2010.5627200
23.
Epstein
,
B. R.
, and
Foster
,
K. R.
,
1983
, “
Anisotropy in the Dielectric Properties of Skeletal Muscle
,”
Med. Biol. Eng. Comput.
,
21
(
1
), pp.
51
55
. 10.1007/BF02446406
24.
Yero
,
D. D.
,
González
,
F. G.
,
Van Troyen
,
D.
, and
Vandenbosch
,
G. A.
,
2019
, “
Modeling of RF Thermal Ablation Taking Into Account the Temperature Dependence of the Tissue Properties
,”
Rev. Cient. Ing. Electrón., Autom. Comun.
,
40
(
1
), pp.
81
95
.https://www.semanticscholar.org/paper/Modeling-of-RF-thermal-ablation-taking-into-account-Yero-Gonz%C3%A1lez/e074fb593ac89ab128b6a1576964fbdaaa8fadff
25.
Deas Yero
,
D.
,
Gilart Gonzalez
,
F.
,
Van Troyen
,
D.
, and
Vandenbosch
,
G. A. E.
,
2018
, “
Dielectric Properties of Ex Vivo Porcine Liver Tissue Characterized at Frequencies Between 5 and 500 KHz When Heated at Different Rates
,”
IEEE Trans. Biomed. Eng.
,
65
(
11
), pp.
2560
2568
.10.1109/TBME.2018.2807981
26.
Trujillo
,
M.
, and
Berjano
,
E.
,
2013
, “
Review of the Mathematical Functions Used to Model the Temperature Dependence of Electrical and Thermal Conductivities of Biological Tissue in Radiofrequency Ablation
,”
Int. J. Hyperthermia
,
29
(
6
), pp.
590
597
.10.3109/02656736.2013.807438
27.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
, New York.
28.
Shao
,
Y. L.
,
Leo
,
H. L.
, and
Chua
,
K. J.
,
2017
, “
Studying the Thermal Performance of a Bipolar Radiofrequency Ablation With an Improved Electrode Matrix System: In Vitro Experiments and Modelling
,”
Appl. Therm. Eng.
,
116
, pp.
623
635
.10.1016/j.applthermaleng.2017.01.073
29.
Mcintosh
,
R. L.
, and
Anderson
,
V.
,
2010
, “
A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of a Human at Rest
,”
Biophys. Rev. Lett.
,
5
(
3
), pp.
129
151
.10.1142/S1793048010001184
30.
Singh
,
S.
, and
Repaka
,
R.
,
2017
, “
Temperature-Controlled Radiofrequency Ablation of Different Tissues Using Two-Compartment Models
,”
Int. J. Hyperthermia
,
33
(
2
), pp.
122
134
.10.1080/02656736.2016.1223890
31.
Singh
,
S.
, and
Repaka
,
R.
,
2018
, “
Parametric Sensitivity Analysis of Critical Factors Affecting the Thermal Damage During RFA of Breast Tumor
,”
Int. J. Therm. Sci.
,
124
, pp.
366
374
.10.1016/j.ijthermalsci.2017.10.032
32.
Kumru
,
H. T.
,
Attaluri
,
A.
,
Gordin
,
V.
, and
Cortes
,
D. H.
,
2021
, “
PID Controlled, Finite-Element Simulation of Bipolar Radiofrequency Ablation of Porcine Spinal Muscle
,”
Proceedings of Summer Biomechanics, Bioengineering and Biotransport Conference
, Virtual Conference, June 14–18, pp.
827
828
.
33.
Tungjitkusolmun
,
S.
,
Staelin
,
S. T.
,
Haemmerich
,
D.
,
Tsai
,
J.-Z.
,
Cao
,
H.
,
Webster
,
J. G.
,
Lee
,
F. T.
,
Mahvi
,
D. M.
, and
Vorperian
,
V. R.
,
2002
, “
Three-Dimensional Finite-Element Analyses for Radio-Frequency Hepatic Tumor Ablation
,”
IEEE Trans. Biomed. Eng.
,
49
(
1
), pp.
3
9
. 10.1109/10.972834
34.
Cleophas
,
T. J.
,
Zwinderman
,
A. H.
,
Cleophas
,
T. F.
, and
Cleophas
,
E. P.
,
2009
,
Statistics Applied to Clinical Trials
,
Springer
, Dordrecht, The Netherlands.
35.
Browne
,
J. E.
,
Watson
,
A. J.
,
Gibson
,
N. M.
,
Dudley
,
N. J.
, and
Elliott
,
A. T.
,
2004
, “
Objective Measurements of Image Quality
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
229
237
.10.1016/j.ultrasmedbio.2003.10.002
36.
Zell
,
M.
,
Lyng
,
J. G.
,
Cronin
,
D. A.
, and
Morgan
,
D. J.
,
2009
, “
Ohmic Heating of Meats: Electrical Conductivities of Whole Meats and Processed Meat Ingredients
,”
Meat Sci.
,
83
(
3
), pp.
563
570
.10.1016/j.meatsci.2009.07.005
37.
Sarang
,
S.
,
Sastry
,
S. K.
, and
Knipe
,
L.
,
2008
, “
Electrical Conductivity of Fruits and Meats During Ohmic Heating
,”
J. Food Eng.
,
87
(
3
), pp.
351
356
.10.1016/j.jfoodeng.2007.12.012
38.
Gabriel
,
C.
,
Peyman
,
A.
, and
Grant
,
E. H.
,
2009
, “
Electrical Conductivity of Tissue at Frequencies Below 1 MHz
,”
Phys. Med. Biol.
,
54
(
16
), pp.
4863
4878
.10.1088/0031-9155/54/16/002
39.
Gabriel
,
S.
,
Lau
,
R. W.
, and
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2271
2293
.10.1088/0031-9155/41/11/003
40.
Stoy
,
R. D.
,
Foster
,
K. R.
, and
Schwan
,
H. P.
,
1982
, “
Dielectric Properties of Mammalian Tissues From 0.1 to 100 MHz; a Summary of Recent Data
,”
Phys. Med. Biol.
,
27
(
4
), pp.
501
513
.10.1088/0031-9155/27/4/002
41.
Gabriel
,
C.
,
1996
,
Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies
,
Department of Physics
,
King’s College London, London, UK
.
42.
Rossmann
,
C.
, and
Haemmerich
,
D.
,
2014
, “
Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures
,”
Crit. Rev. Biomed. Eng.
,
42
(
6
), pp.
467
492
. 10.1615/CritRevBiomedEng.2015012486
43.
Zurbuchen
,
U.
,
Holmer
,
C.
,
Lehmann
,
K. S.
,
Stein
,
T.
,
Roggan
,
A.
,
Seifarth
,
C.
,
Buhr
,
H.-J.
, and
Ritz
,
J.-P.
,
2010
, “
Determination of the Temperature-Dependent Electric Conductivity of Liver Tissue Ex Vivo and In Vivo: Importance for Therapy Planning for the Radiofrequency Ablation of Liver Tumours
,”
Int. J. Hyperthermia
,
26
(
1
), pp.
26
33
.10.3109/02656730903436442
44.
Rush
,
S.
,
Abildskov
,
J. A.
, and
McFee
,
R.
,
1963
, “
Resistivity of Body Tissues at Low Frequencies
,”
Circ. Res.
,
12
(
1
), pp.
40
50
.10.1161/01.RES.12.1.40
45.
Steendijk
,
P.
,
Velde
,
E. T.
, and
Baan
,
J.
,
1994
, “
Dependence of Anisotropic Myocardial Electrical Resistivity on Cardiac Phase and Excitation Frequency
,”
Basic Res. Cardiol.
,
89
(
5
), pp.
411
426
. 10.1007/BF00788279
46.
Faes
,
T. J. C.
,
Van Der Meij
,
H. A.
,
De Munck
,
J. C.
, and
Heethaar
,
R. M.
,
1999
, “
The Electric Resistivity of Human Tissues (100 Hz-10 MHz): A Meta-Analysis of Review Studies
,”
Physiol. Meas.
,
20
(
4
), pp.
R1
R10
.10.1088/0967-3334/20/4/201
47.
Choi
,
B. K.
,
Katoch
,
N.
,
Ko
,
I. O.
,
Park
,
J. A.
,
Kim
,
J. W.
,
Kim
,
H. J.
, and
Woo
,
E. J.
,
2020
, “
Evaluation of Electrical Conductivity and Anisotropy in Muscle Tissues Using Conductivity Tensor Imaging (CTI)
,”
AIP Adv.
,
10
(
11
), p.
115115
. 10.1063/5.0031592
48.
Ryan
,
T. P.
,
Platt
,
R. C.
,
Dadd
,
J. S.
, and
Humphries
,
S.
,
1997
, “
Tissue Electrical Properties as a Function of Thermal Dose for Use in a Finite Element Model
,”
J. Heat Transfer-Trans. ASME
,
355
, pp.
167
172
.
49.
Yue
,
K.
,
Cheng
,
L.
,
Yang
,
L.
,
Jin
,
B.
, and
Zhang
,
X.
,
2017
, “
Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro
,”
Int. J. Thermophys.
,
38
(
6
), pp.
1
12
.10.1007/s10765-017-2214-x
50.
Leitman
,
J. D.
,
1967
, “
Thermal Conductivity of Meats
,” Ph.D. thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
51.
Haemmerich
,
D.
,
Dos Santos
,
I.
,
Schutt
,
D. J.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2006
, “
In Vitro Measurements of Temperature-Dependent Specific Heat of Liver Tissue
,”
Med. Eng. Phys.
,
28
(
2
), pp.
194
197
.10.1016/j.medengphy.2005.04.020
52.
Haemmerich
,
D.
,
Wright
,
A. W.
,
Mahvi
,
D. M.
,
Lee
,
F. T.
, and
Webster
,
J. G.
,
2003
, “
Hepatic Bipolar Radiofrequency Ablation Creates Coagulation Zones Close to Blood Vessels: A Finite Element Study
,”
Med. Biol. Eng. Comput.
,
41
(
3
), pp.
317
323
.10.1007/BF02348437
53.
Kumru
,
H. T.
,
Attaluri
,
A.
,
Gordin
,
V.
, and
Cortes
,
D. H.
,
2022
, “
Predicting Temperature Field During Thermal Ablations Using Deep Neural Networks
,”
Proceedings of Summer Biomechanics, Bioengineering and Biotransport Conference
, Eastern Shore, MD, pp.
458
459
.
You do not currently have access to this content.