Abstract

Although blood viscosity has attracted much attention for its effect on hemodynamic parameters related to atherosclerosis, quantitative method for evaluating blood viscosity in vivo is not currently established. The purpose of this study was to verify the feasibility of blood viscosity estimation by a two-dimensional ultrasonic-measurement-integrated (2D-UMI) analysis system that computes an intravascular blood flow field by feeding back an ultrasonic measurement data to a numerical simulation. A method to estimate blood viscosity was proposed by reproducing the flow field of an analysis object in the feedback domain of ultrasonic Doppler velocity in a 2D-UMI blood flow analysis system, and evaluating the variation of the Doppler velocity caused by the analysis viscosity in the nonfeedback domain at the downstream side. In a numerical experiment, a viscosity estimation was performed for numerical solutions of sinusoidal oscillating flows analyzed as a blood flow model in a human common carotid artery at four different types of blood viscosities. The estimation viscosities were made to correspond to those of all analysis objects by giving proper conditions on the feedback gain and feedback domain to optimize the accuracy of the 2D-UMI blood flow analysis. In conclusion, the feasibility of blood viscosity estimation by 2D-UMI analysis was established. Simultaneous measurement of the in vivo blood viscosity and flow field can be easily performed in many clinical cases by its widespread use at clinical sites, thereby clarifying the relationship between hemodynamics and vascular pathology for various blood flow fields.

References

1.
World Health Organization
,
2018
, Causes of Death,
Geneva, Switzerland
, accessed Mar. 28, 2021, https://apps.who.int/gho/data/node.wrapper.MGHEMORTCAUSE?lang=en
2.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
3.
Schmid-Schönbein
,
G. W.
, and
Granger
,
D. N.
,
2003
,
Molecular Basis for Microcirculatory Disorders
,
Springer
, Berlin.
4.
Chatzizisis
,
Y. S.
, and
Giannoglou
,
G. D.
,
2006
, “
Pulsatile Flow: A Critical Modulator of the Natural History of Atherosclerosis
,”
Med. Hypotheses
,
67
(
2
), pp.
338
340
.10.1016/j.mehy.2006.02.005
5.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
,
2000
, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,”
J. Magn. Reson. Imaging
,
11
(
3
), pp.
299
311
.10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M
6.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M. B.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements
,”
J. Biomech.
,
33
(
2
), pp.
137
44
.10.1016/S0021-9290(99)00164-5
7.
Markl
,
M.
,
Wegent
,
F.
,
Zech
,
T.
,
Bauer
,
S.
,
Strecker
,
C.
,
Schumacher
,
M.
,
Weiller
,
C.
,
Hennig
,
J.
, and
Harloff
,
A.
,
2010
, “
In Vivo Wall Shear Stress Distribution in the Carotid Artery Effect of Bifurcation Geometry, Internal Carotid Artery Stenosis, and Recanalization Therapy
,”
Circulation-Cardiovasc. Imaging
,
3
(
6
), pp.
647
655
.10.1161/CIRCIMAGING.110.958504
8.
Funamoto
,
K.
,
Hayase
,
T.
,
Shirai
,
A.
,
Saijo
,
Y.
, and
Yambe
,
T.
,
2005
, “
Fundamental Study of Ultrasonic-Measurement-Integrated Simulation of Real Blood Flow in the Aorta
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
415
428
.10.1007/s10439-005-2495-2
9.
Kato
,
T.
,
Funamoto
,
K.
,
Hayase
,
T.
,
Sone
,
S.
,
Kadowaki
,
H.
,
Shimazaki
,
T.
,
Jibiki
,
T.
,
Miyama
,
K.
, and
Lei
,
L.
,
2014
, “
Development and Feasibility Study of a Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Analysis System for Hemodynamics in Carotid Arteries
,”
Med. Biol. Eng. Comput.
,
52
(
11
), pp.
933
943
.10.1007/s11517-014-1193-3
10.
Kato
,
T.
,
Sone
,
S.
,
Funamoto
,
K.
,
Hayase
,
T.
,
Kadowaki
,
H.
, and
Taniguchi
,
N.
,
2016
, “
Effects of Inflow Velocity Profile on Two-Dimensional Hemodynamic Analysis by Ordinary and Ultrasonic-Measurement-Integrated Simulations
,”
Med. Biol. Eng. Comput.
,
54
(
9
), pp.
1331
1339
.10.1007/s11517-015-1376-6
11.
Pop
,
G. A. M.
,
Bisschops
,
L. L. A.
,
Iliev
,
B.
,
Struijk
,
P. C.
,
van der Hoeven
,
J. G.
, and
Hoedemaekers
,
C. W. E.
,
2013
, “
On-Line Blood Viscosity Monitoring In Vivo With a Central Venous Catheter, Using Electrical Impedance Technique
,”
Biosens. Bioelectron.
,
41
(
1
), pp.
595
601
.10.1016/j.bios.2012.09.033
12.
Okahara
,
S.
,
Soh
,
Z.
,
Miyamoto
,
S.
,
Takahashi
,
H.
,
Itoh
,
H.
,
Takahashi
,
S.
,
Sueda
,
T.
, and
Tsuji
,
T.
,
2017
, “
A Novel Blood Viscosity Estimation Method Based on Pressure-Flow Characteristics of an Oxygenator During Cardiopulmonary Bypass
,”
Artif. Organs
,
41
(
3
), pp.
262
266
.10.1111/aor.12747
13.
Yoshida
,
T.
,
Sugita
,
N.
,
Abe
,
M.
,
Yoshizawa
,
M.
,
Miura
,
H.
,
Shiraishi
,
Y.
, and
Yambe
,
T.
,
2014
, “
A Study on Blood Viscosity Estimation Using Pulse Wave Signal
,”
Proc. Trans. Jpn. Soc. Med. Biol. Eng.
,
52
(Supplement), pp.
O389
O391
.10.11239/jsmbe.52.O-389
14.
Kadowaki
,
H.
,
Hayase
,
T.
,
Funamoto
,
K.
, and
Taniguchi
,
N.
,
2016
, “
Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation
,”
IEEE Trans. Biomed. Eng.
,
63
(
2
), pp.
403
414
.10.1109/TBME.2015.2461559
15.
Press
,
W. H.
,
1986
,
Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge Cambridgeshire, New York
.
16.
Yamagata
,
T.
, and
Hayase
,
T.
,
2009
, “
Blood Flow Analysis by Ultrasonic-Measurement-Integrated Simulation With Flow Rate Estimation
,”
Proceedings of the Ninth International Symposium Tohoku University Global COE Programme Global Nano-Biomedical Engineering Education and Research Network Centre
, Sendai, Japan, Mar. 27–28, pp.
114
115
.
17.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Pub. Corp
.,
Washington, DC/New York
.
18.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.10.1016/0021-9991(92)90177-Z
19.
Schneider
,
G. E.
, and
Zedan
,
M.
,
1981
, “
A Modified Strongly Implicit Procedure for the Numerical Solution of Field Problems
,”
Numer. Heat Transfer
,
4
(
1
), pp.
1
19
.10.1080/01495728108961775
20.
Kitaoka
,
M.
,
Matsuo
,
H.
,
Taniguchi
,
N.
,
Ozaki
,
T.
,
Kaneda
,
S.
,
Ennda
,
E.
,
Nagatsuka
,
K.
,
Harada
,
R.
,
Hirai
,
T.
,
Fushimi
,
E.
, and
Yasaka
,
M.
,
2009
, “
Standard Method for Ultrasound Evaluation of Carotid Artery Lesions
,”
J. Med. Ultrason.
,
36
(
4
), pp.
219
226
.10.1007/s10396-009-0238-y
21.
Harada
,
T.
,
Hayase
,
T.
,
Miyauchi
,
S.
, and
Inoue
,
K.
,
2016
, “
Two-Dimensional Ultrasonic-Measurement-Integrated Simulation of Blood Flow in a Carotid Artery Considering Deformation of the Blood Vessel
,”
Proceedings of JSME Conference on Frontiers in Bioengineering
, Vol.
27
, Sapporo, Japan, Oct. 22–23, p.
B209
.
22.
Funamoto
,
K.
,
Hayase
,
T.
,
Saijo
,
Y.
, and
Yambe
,
T.
,
2011
, “
Numerical Analysis of Effects of Measurement Errors on Ultrasonic-Measurement-Integrated Simulation
,”
IEEE Trans. Biomed. Eng.
,
58
(
3
), pp.
653
663
.10.1109/TBME.2010.2095418
23.
Funamoto
,
K.
,
Hayase
,
T.
,
Saijo
,
Y.
, and
Yambe
,
T.
,
2008
, “
Numerical Experiment for Ultrasonic-Measurement-Integrated Simulation of Three-Dimensional Unsteady Blood Flow
,”
Ann. Biomed. Eng.
,
36
(
8
), pp.
1383
–13
97
.10.1007/s10439-008-9519-7
24.
Kadowaki
,
H.
,
Hayase
,
T.
,
Funamoto
,
K.
,
Sone
,
S.
,
Shimazaki
,
T.
,
Jibiki
,
T.
, and
Miyama
,
K.
,
2015
, “
Blood Flow Analysis in Carotid Artery Bifurcation by Two-Dimensional Ultrasonic-Measurement-Integrated Simulation
,”
J. Biomech. Sci. Eng.
,
10
(
1
), p.
1400266
.10.1299/jbse.14-00266
You do not currently have access to this content.