Abstract

In this paper, a cable-driven puncturing surgery robot named cable-driven puncturing surgery robot (CPSR) is proposed for soft needle. The cable-driven mechanism has lower mass, smaller dimension and smooth transmission. The motor driving the rotational joints is separated using cable, which strengthens the dynamic performance of the robot. A decoupling mechanism based on movable pulley is also proposed to eliminate the cable coupling error. Transmission error of cable-driven mechanism is also analyzed to improve the control accuracy. The simulation of transmission error is completed to optimize the design parameters of cable-driven mechanism. In experiments, the feasibility of the cable decoupling mechanism is validated. Also the insertion error less than 0.7 mm and repeatability less than 2.5 mm are achieved. Finally the reasons limiting the accuracy and corresponding solutions are discussed. In the future research, the shape sensor will be fabricated using optic fiber and mounted on the slim needle which are helpful to complete automated operations with higher accuracy.

References

1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.10.1016/j.medengphy.2006.07.003
2.
Fu
,
M.
,
Solovey
,
K.
,
Salzman
,
O.
, and
Alterovitz
,
R.
,
2022
, “
Resolution-Optimal Motion Planning for Steerable Needles
,” International Conference on Robotics and Automation (
ICRA
), Philadelphia, PA, May 23–27, pp.
9652
9659
.10.1109/ICRA46639.2022.9811850
3.
Webster
,
R. J.
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.10.1177/0278364906065388
4.
Lapouge
,
G.
,
Poignet
,
P.
, and
Troccaz
,
J.
,
2021
, “
Towards 3D Ultrasound Guided Needle Steering Robust to Uncertainties, Noise, and Tissue Heterogeneity
,”
IEEE Trans. Bio-Med. Eng.
,
68
(
4
), pp.
1166
1177
.10.1109/TBME.2020.3022619
5.
Dupont
,
P. E.
,
Simaan
,
N.
,
Choset
,
H.
, and
Rucker
,
C.
,
2022
, “
Continuum Robots for Medical Interventions
,”
Proc. IEEE Inst. Electr. Electron. Eng.
,
110
(
7
), pp.
847
870
.10.1109/JPROC.2022.3141338
6.
Oliver-Butler
,
K.
,
Till
,
J.
, and
Rucker
,
C.
,
2019
, “
Continuum Robot Stiffness Under External Loads and Prescribed Tendon Displacements
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
403
419
.10.1109/TRO.2018.2885923
7.
Amanov
,
E.
,
Nguyen
,
T.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Tendon-Driven Continuum Robots With Extensible Sections—a Model-Based Evaluation of Path-Following Motions
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
7
23
.10.1177/0278364919886047
8.
Adagolodjo
,
Y.
,
Laurent
,
G.
,
Michel
,
D. M.
, and
Hadrien
,
C.
,
2019
, “
Robotic Insertion of Flexible Needle in Deformable Structures Using Inverse Finite-Element Simulation
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
697
708
.10.1109/TRO.2019.2897858
9.
Jushiddi
,
M. G.
,
Cahalane
,
R. M.
,
Byrne
,
M.
,
Mani
,
A.
,
Silien
,
C.
,
Tofail
,
S. A. M.
,
Mulvihill
,
J. J. E.
, and
Tiernan
,
P.
,
2020
, “
Bevel Angle Study of Flexible Hollow Needle Insertion Into Biological Mimetic Soft-Gel: Simulation and Experimental Validation
,”
J. Mech. Behav. Biomed.
,
111
, pp.
103896
103896
.10.1016/j.jmbbm.2020.103896
10.
Lv
,
Z.
,
Song
,
Q.
,
Gao
,
F.
,
Liu
,
Z.
,
Wan
,
Y.
, and
Jiang
,
Y.
,
2022
, “
Three-Dimensional Modeling and Simulation of Muscle Tissue Puncture Process
,”
Chin. J. Mech. Eng.
,
35
(
1)
, pp.
1
13
.10.1186/s10033-022-00719-y
11.
Sadati
,
S. H.
,
Naghibi
,
S. E.
,
Shiva
,
A.
,
Michael
,
B.
,
Renson
,
L.
,
Howard
,
M.
,
Rucker
,
C. D.
, et al.,
2021
, “
TMTDyn: A Matlab Package for Modeling and Control of Hybrid Rigid–Continuum Robots Based on Discretized Lumped Systems and Reduced-Order Models
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
296
347
.10.1177/0278364919881685
12.
Patil
,
S.
,
Burgner
,
J.
,
Webster
,
R. J.
, and
Alterovitz
,
R.
,
2014
, “
Needle Steering in 3-D Via Rapid Replanning
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
853
864
.10.1109/TRO.2014.2307633
13.
Wei
,
G.
, and
Jiang
,
Q.
,
2021
, “
Needle Shape Sensing With Fabry-Perot Interferometers
,”
IEEE Sens. J.
,
21
(
20
), pp.
22720
22727
.10.1109/JSEN.2021.3105383
14.
Li
,
P.
,
Yang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Needle-Tissue Interactive Mechanism and Steering Control in Image-Guided Robot-Assisted Minimally Invasive Surgery: A Review
,”
Med. Biol. Eng. Comput.
,
56
(
6
), pp.
931
949
.10.1007/s11517-018-1825-0
15.
Wang
,
W.
,
Pan
,
B.
,
Yan
,
J.
,
Fu
,
Y.
, and
Liu
,
Y.
,
2021
, “
A Review of the Research Progress of Interventional Medical Equipment and Methods for Prostate Cancer
,”
Int. J. Med. Rob. Comp.
,
17
(
1
), pp.
1
14
.10.1002/rcs.2190
16.
Dai
,
X.
,
Zhang
,
Y.
,
Jiang
,
J.
, and
Li
,
B.
,
2021
, “
Image-Guided Robots for Low Dose Rate Prostate Brachytherapy: Perspectives on Safety in Design and Use
,”
Int. J. Med. Rob. Comp.
,
17
(
3)
, pp.
1
21
.10.1002/rcs.2239
17.
Meli
,
L.
,
Pacchierotti
,
C.
, and
Prattichizzo
,
D.
,
2017
, “
Experimental Evaluation of Magnified Haptic Feedback for Robot-Assisted Needle Insertion and Palpation
,”
Int. J. Med. Rob. Comp.
,
13
(
4)
, pp.
2
14
.10.1002/rcs.1809
18.
Martinez
,
R. M.
,
Ptacek
,
W.
,
Schweitzer
,
W.
,
Kronreif
,
G.
,
Fürst
,
M.
,
Thali
,
M. J.
, and
Ebert
,
L. C.
,
2014
, “
CT-Guided, Minimally Invasive, Postmortem Needle Biopsy Using the B-Rob II Needle-Positioning Robot
,”
J. Forensic Sci.
,
59
(
2
), pp.
517
521
.10.1111/1556-4029.12329
19.
Franco
,
E.
,
Brujic
,
D.
,
Rea
,
M.
,
Gedroyc
,
W. M.
, and
Ristic
,
M.
,
2016
, “
Needle-Guiding Robot for Laser Ablation of Liver Tumors Under MRI Guidance
,”
IEEE/ASME Trans. Mechatron.
,
21
(
2
), pp.
931
944
.10.1109/TMECH.2015.2476556
20.
Micromate™
,
2022
, " “
Steering Your Path Towards Micro-Invasive Interventions
,” Micromate™, Kitzbühel, Austria, accessed Oct. 1, 2022, https://www.interventional-systems.com
21.
Patel
,
N. A.
,
Yan
,
J.
,
Levi
,
D.
,
Monfaredi
,
R.
,
Cleary
,
K.
, and
Iordachita
,
I.
,
2018
, “
Body-Mounted Robot for Image-Guided Percutaneous Interventions: Mechanical Design and Preliminary Accuracy Evaluation
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Madrid, Spain, Oct. 1–5, pp.
1443
1448
.10.1109/IROS.2018.8593807
22.
Walsh
,
C. J.
,
Hanumara
,
N. C.
,
Slocum
,
A. H.
,
Shepard
,
J.
, and
Gupta
,
R.
,
2008
, “
A Patient-Mounted, Telerobotic Tool for CT-Guided Percutaneous Interventions
,”
ASME J. Med. Devices
,
2
(
1
), p.
011007
.10.1115/1.2902854
23.
He
,
Z.
,
Kwok
,
K.
,
Dong
,
Z.
,
Fang
,
G.
,
Ho
,
J. D.
,
Cheung
,
C. L.
,
Chang
,
H.
, et al.,
2020
, “
Design of a Percutaneous MRI-Guided Needle Robot With Soft Fluid-Driven Actuator
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2099
2106
.10.1109/LRA.2020.2969929
24.
XACT ACE® ROBOTIC SYSTEM
,
2022
, “The World'S First and Only Comprehensive Robotic System,”
XACT Robotics Ltd
.,
Caesarea, Israel
, accessed Oct. 1, 2022, https://xactrobotics.com
25.
Shang
,
W.
,
Su
,
H.
,
Li
,
G.
, and
Fischer
,
G. S.
,
2013
, “
Teleoperation System With Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion With Haptic Feedback
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Tokyo Big Sight, Japan, Nov. 3–8, pp.
4092
4098
.10.1109/IROS.2013.6696942
26.
Su
,
H.
,
Shang
,
W.
,
Li
,
G.
,
Patel
,
N.
, and
Fischer
,
G. S.
,
2017
, “
An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1917
1928
.10.1007/s10439-017-1839-z
27.
Hiraki
,
T.
,
Kamegawa
,
T.
,
Matsuno
,
T.
,
Komaki
,
T.
,
Sakurai
,
J.
, and
Kanazawa
,
S.
,
2018
, “
Zerobot®: A Remote-Controlled Robot for Needle Insertion in CT-Guided Interventional Radiology Developed at Okayama University
,”
Acta Med. Okayama
,
72
(
6
), pp.
539
546
.10.18926/AMO/56370
28.
Yokouchi
,
K.
,
Kamegawa
,
T.
,
Matsuno
,
T.
,
Hiraki
,
T.
,
Yamaguchi
,
T.
, and
Gofuku
,
A.
,
2020
, “
Development of a Gripper With Variable Stiffness for a Ct-Guided Needle Insertion Robot
,”
J. Rob. Mechatron.
,
32
(
3
), pp.
692
700
.10.20965/jrm.2020.p0692
29.
Lin
,
X.
,
Zhou
,
S.
,
Wen
,
T.
,
Jiang
,
S.
,
Wang
,
C.
, and
Chen
,
J.
,
2021
, “
A Novel Multi-Dof Surgical Robotic System for Brachytherapy on Liver Tumor: Design and Control
,”
Int. J. Comp. Ass. Rad.
,
16
(
6
), pp.
1003
1014
.10.1007/s11548-021-02380-7
30.
Li
,
H.
,
Wang
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Novel Manipulator With Needle Insertion Forces Feedback for Robot-Assisted Lumbar Puncture
,”
Int. J. Med. Rob. Comp.
,
17
(
2
), p.
e2226
.10.1002/rcs.2226
31.
Leipheimer
,
J.
,
Balter
,
M.
,
Chen
,
A.
, and
Yarmush
,
M.
,
2022
, “
Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization
,”
ASME J. Med. Devices
,
16
(
2
), p.
021015
.10.1115/1.4053688
32.
Liu
,
W.
,
Yang
,
Z.
,
Jiang
,
S.
,
Feng
,
D.
, and
Zhang
,
D.
,
2020
, “
Design and Implementation of a New Cable-Driven Robot for MRI-Guided Breast Biopsy
,”
Int. J. Med. Rob. Comp.
,
16
(
2
), pp.
2063
2078
.10.1002/rcs.2063
33.
Jiang
,
W.
,
Wang
,
C.
,
Yan
,
B.
,
He
,
X.
,
Cui
,
H.
,
Peng
,
L.
,
Yang
,
Y.
, and
Liu
,
H.
,
2021
, “
An Autonomous Intervention Strategy for Robotic Soft Endoscope Guided by Anatomical Features
,”
ROBOT
,
43
(
4
), pp.
493
512
.
34.
Jiang
,
S.
,
Yuan
,
W.
,
Yang
,
Y.
,
Zhang
,
D.
,
Liu
,
N.
, and
Wang
,
W.
,
2017
, “
Modelling and Analysis of a Novel CT-Guided Puncture Robot for Lung Brachytherapy
,”
Adv. Rob.
,
31
(
11
), pp.
557
569
.10.1080/01691864.2017.1298465
35.
Kim
,
Y.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.10.1109/TRO.2017.2732354
36.
Lee
,
J.
,
Kim
,
Y.
,
Roh
,
S.
, and
Kim
,
J.
,
2013
, “
Tension Propagation Analysis of Novel Robotized Surgical Platform for Transumbilical Single-Port Access Surgery
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Tokyo Big Sight, Japan, Nov. 3–8, pp.
3083
3089
.10.1109/IROS.2013.6696793
You do not currently have access to this content.