Abstract

Three-dimensional bioprinting is a rapidly growing field attempting to recreate functional tissues for medical and pharmaceutical purposes. Development of functional tissue requires deposition of multiple biomaterials encapsulating multiple cell types, i.e., bio-ink necessitating switching ability between bio-inks. Existing systems use more than one print head to achieve this complex interchangeable deposition, decreasing efficiency, structural integrity, and accuracy. Therefore, the objective of this paper is to develop an alternative deposition system that will not require more than one print head for multimaterial bioprinting. To achieve that objective, we developed a nozzle system capable of switching between multiple bio-inks with continuous deposition, ensuring the minimum transition distance so that precise deposition transitioning can be achieved. This research progressed from a prototyping stage of nozzle system to the final selection of the system. Finally, the effect of rheological properties of different biomaterial compositions on the transition distance is investigated by fabricating the sample scaffolds.

References

1.
Ahn
,
S.
,
Lee
,
H.
, and
Kim
,
G.
,
2013
, “
Functional Cell-Laden Alginate Scaffolds Consisting of Core/Shell Struts for Tissue Regeneration
,”
Carbohydr. Polym.
,
98
(
1
), pp.
936
942
.10.1016/j.carbpol.2013.07.008
2.
Wang
,
Z.
,
Lee
,
S. J.
,
Cheng
,
H.-J.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2018
, “
3D Bioprinted Functional and Contractile Cardiac Tissue Constructs
,”
Acta Biomater.
,
70
, pp.
48
56
.10.1016/j.actbio.2018.02.007
3.
Kong
,
H.-J.
,
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2002
, “
Decoupling the Dependence of Rheological/Mechanical Properties of Hydrogels From Solids Concentration
,”
Polymer
,
43
(
23
), pp.
6239
6246
.10.1016/S0032-3861(02)00559-1
4.
Markstedt
,
K.
,
Mantas
,
A.
,
Tournier
,
I.
,
Martínez Ávila
,
H.
,
Hägg
,
D.
, and
Gatenholm
,
P.
,
2015
, “
3D Bioprinting Human Chondrocytes With Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications
,”
Biomacromolecules
,
16
(
5
), pp.
1489
1496
.10.1021/acs.biomac.5b00188
5.
Kolesky
,
D. B.
,
Homan
,
K. A.
,
Skylar-Scott
,
M. A.
, and
Lewis
,
J. A.
,
2016
, “
Three-Dimensional Bioprinting of Thick Vascularized Tissues
,”
Proc. Natl. Acad. Sci.
,
113
(
12
), pp.
3179
3184
.10.1073/pnas.1521342113
6.
Bertassoni
,
L. E.
,
Cecconi
,
M.
,
Manoharan
,
V.
,
Nikkhah
,
M.
,
Hjortnaes
,
J.
,
Cristino
,
A. L.
,
Barabaschi
,
G.
, et al.,
2014
, “
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
,”
Lab Chip
,
14
(
13
), pp.
2202
11
.10.1039/C4LC00030G
7.
Zhang
,
Y. S.
,
Arneri
,
A.
,
Bersini
,
S.
,
Shin
,
S.-R.
,
Zhu
,
K.
,
Goli-Malekabadi
,
Z.
,
Aleman
,
J.
, et al
.
,
2016
, “
Bioprinting 3D Microfibrous Scaffolds for Engineering Endothelialized Myocardium and Heart-on-a-Chip
,”
Biomaterials
,
110
, pp.
45
59
.10.1016/j.biomaterials.2016.09.003
8.
Nadernezhad
,
A.
,
Khani
,
N.
,
Skvortsov
,
G. A.
,
Toprakhisar
,
B.
,
Bakirci
,
E.
,
Menceloglu
,
Y.
,
Unal
,
S.
, et al.,
2016
, “
Multifunctional 3D Printing of Heterogeneous Hydrogel Structures
,”
Sci. Rep.
,
6
(
1
), pp.
1
12
.10.1038/srep33178
9.
Shim
,
J.-H.
,
Lee
,
J.-S.
,
Kim
,
J. Y.
, and
Cho
,
D.-W.
,
2012
, “
Bioprinting of a Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using a Multi-Head Tissue/Organ Building System
,”
J. Micromech. Microeng.
,
22
(
8
), p.
085014
.10.1088/0960-1317/22/8/085014
10.
Xu
,
T.
,
Binder
,
K. W.
,
Albanna
,
M. Z.
,
Dice
,
D.
,
Zhao
,
W.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2012
, “
Hybrid Printing of Mechanically and Biologically Improved Constructs for Cartilage Tissue Engineering Applications
,”
Biofabrication
,
5
(
1
), p.
015001
.10.1088/1758-5082/5/1/015001
11.
Kundu
,
J.
,
Shim
,
J. H.
,
Jang
,
J.
,
Kim
,
S. W.
, and
Cho
,
D. W.
,
2015
, “
An Additive Manufacturing‐Based PCL–Alginate–Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering
,”
J. Tissue Eng. Regener. Med.
,
9
(
11
), pp.
1286
1297
.10.1002/term.1682
12.
Miri
,
A. K.
,
Nieto
,
D.
,
Iglesias
,
L.
,
Goodarzi Hosseinabadi
,
H.
,
Maharjan
,
S.
,
Ruiz-Esparza
,
G. U.
,
Khoshakhlagh
,
P.
, et al.,
2018
, “
Microfluidics‐Enabled Multimaterial Maskless Stereolithographic Bioprinting
,”
Adv. Mater.
,
30
(
27
), p.
1800242
.10.1002/adma.201800242
13.
Sakai
,
S.
,
Ueda
,
K.
,
Gantumur
,
E.
,
Taya
,
M.
, and
Nakamura
,
M.
,
2018
, “
Drop‐on‐Drop Multimaterial 3D Bioprinting Realized by Peroxidase‐Mediated Cross‐Linking
,”
Macromol. Rapid Commun.
,
39
(
3
), p.
1700534
.10.1002/marc.201700534
14.
Ruiz-Cantu
,
L.
,
Gleadall
,
A.
,
Faris
,
C.
,
Segal
,
J.
,
Shakesheff
,
K.
, and
Yang
,
J.
,
2020
, “
Multi-Material 3D Bioprinting of Porous Constructs for Cartilage Regeneration
,”
Mater. Sci. Eng.: C
,
109
, p.
110578
.10.1016/j.msec.2019.110578
15.
Sodupe-Ortega
,
E.
,
Sanz-Garcia
,
A.
,
Pernia-Espinoza
,
A.
, and
Escobedo-Lucea
,
C.
,
2018
, “
Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering
,”
Materials
,
11
(
8
), p.
1402
.10.3390/ma11081402
16.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.10.1002/adma.201305506
17.
Maiullari
,
F.
,
Costantini
,
M.
,
Milan
,
M.
,
Pace
,
V.
,
Chirivì
,
M.
,
Maiullari
,
S.
,
Rainer
,
A.
, et al
.
,
2018
, “
A Multi-Cellular 3D Bioprinting Approach for Vascularized Heart Tissue Engineering Based on HUVECs and iPSC-Derived Cardiomyocytes
,”
Sci. Rep., 10
,
8
(
1
), pp.
1
5
.10.1038/s41598-018-31848-x
18.
Habib
,
M.
, and
Khoda
,
B.
,
2020
, “
Fiber Filled Hybrid Hydrogel for Bio-Manufacturing
,”
J. Manuf. Sci. Eng.
,
143
(
4
), pp.
1
38
.10.1115/MSEC2020-8294
19.
Axpe
,
E.
, and
Oyen
,
M. L.
,
2016
, “
Applications of Alginate-Based Bioinks in 3D Bioprinting
,”
Int. J. Mol. Sci.
,
17
(
12
), p.
1976
.10.3390/ijms17121976
20.
Garrett
,
Q.
,
Simmons
,
P. A.
,
Xu
,
S.
,
Vehige
,
J.
,
Zhao
,
Z.
,
Ehrmann
,
K.
, and
Willcox
,
M.
,
2007
, “
Carboxymethylcellulose Binds to Human Corneal Epithelial Cells and is a Modulator of Corneal Epithelial Wound Healing
,”
Invest. Ophthalmol. Visual Sci.
,
48
(
4
), pp.
1559
67
.10.1167/iovs.06-0848
21.
Agarwal
,
T.
,
Narayana
,
S. G. H.
,
Pal
,
K.
,
Pramanik
,
K.
,
Giri
,
S.
, and
Banerjee
,
I.
,
2015
, “
Calcium Alginate-Carboxymethyl Cellulose Beads for Colon-Targeted Drug Delivery
,”
Int. J. Biol. Macromol.
,
75
, pp.
409
417
.10.1016/j.ijbiomac.2014.12.052
22.
Ouyang
,
L.
,
Yao
,
R.
,
Zhao
,
Y.
, and
Sun
,
W.
,
2016
, “
Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells
,”
Biofabrication
,
8
(
3
), p.
035020
.10.1088/1758-5090/8/3/035020
23.
Han
,
Y.
, and
Wang
,
L.
,
2017
, “
Sodium Alginate/Carboxymethyl Cellulose Films Containing Pyrogallic Acid: Physical and Antibacterial Properties
,”
J. Sci. Food Agric.
,
97
(
4
), pp.
1295
1301
.10.1002/jsfa.7863
24.
Tongdeesoontorn
,
W.
,
Mauer
,
L. J.
,
Wongruong
,
S.
,
Sriburi
,
P.
, and
Rachtanapun
,
P.
,
2011
, “
Effect of Carboxymethyl Cellulose Concentration on Physical Properties of Biodegradable Cassava Starch-Based Films
,”
Chem. Central J.
,
5
(
1
), p.
6
.10.1186/1752-153X-5-6
25.
Hardin
,
J. O.
,
Ober
,
T. J.
,
Valentine
,
A. D.
, and
Lewis
,
J. A.
,
2015
, “
Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks
,”
Adv. Mater.
,
27
(
21
), pp.
3279
3284
.10.1002/adma.201500222
26.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
.10.3390/ma11030454
27.
Habib
,
A.
, and
Khoda
,
B.
,
2019
, “
Development of Clay Based Novel Hybrid Bio-Ink for 3D Bio-Printing Process
,”
J. Manuf. Processes
,
38
, pp.
76
87
.10.1016/j.jmapro.2018.12.034
28.
Izadifar
,
M.
,
Babyn
,
P.
,
Kelly
,
M. E.
,
Chapman
,
D.
, and
Chen
,
X.
,
2017
, “
Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment
,”
Tissue Eng. Part C: Methods
,
23
(
9
), pp.
548
564
.10.1089/ten.tec.2017.0222
29.
Sultan
,
S.
, and
Mathew
,
A. P.
,
2018
, “
3D Printed Scaffolds With Gradient Porosity Based on a Cellulose Nanocrystal Hydrogel
,”
Nanoscale
,
10
(
9
), pp.
4421
4431
.10.1039/C7NR08966J
30.
Moroni
,
L.
,
De Wijn
,
J.
, and
Van Blitterswijk
,
C.
,
2005
, “
Three‐Dimensional Fiber‐Deposited PEOT/PBT Copolymer Scaffolds for Tissue Engineering: Influence of Porosity, Molecular Network Mesh Size, and Swelling in Aqueous Media on Dynamic Mechanical Properties
,”
J. Biomed. Mater. Res. Part A
,
75
(
4
), pp.
957
965
.10.1002/jbm.a.30499
31.
Miron-Mendoza
,
M.
,
Seemann
,
J.
, and
Grinnell
,
F.
,
2010
, “
The Differential Regulation of Cell Motile Activity Through Matrix Stiffness and Porosity in Three Dimensional Collagen Matrices
,”
Biomaterials
,
31
(
25
), pp.
6425
6435
.10.1016/j.biomaterials.2010.04.064
32.
Li
,
H.
,
Tan
,
Y. J.
,
Leong
,
K. F.
, and
Li
,
L.
,
2017
, “
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel With Strong Interface Bonding
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20086
20097
.10.1021/acsami.7b04216
33.
Abouzeid
,
R. E.
,
Khiari
,
R.
,
Beneventi
,
D.
, and
Dufresne
,
A.
,
2018
, “
Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering
,”
Biomacromolecules
,
19
(
11
), pp.
4442
4452
.10.1021/acs.biomac.8b01325
34.
Di Giuseppe
,
M.
,
Law
,
N.
,
Webb
,
B.
,
Macrae
,
R. A.
,
Liew
,
L. J.
,
Sercombe
,
T. B.
,
Dilley
,
R. J.
, and
Doyle
,
B. J.
,
2018
, “
Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
150
157
.10.1016/j.jmbbm.2017.12.018
35.
Diamantides
,
N.
,
Wang
,
L.
,
Pruiksma
,
T.
,
Siemiatkoski
,
J.
,
Dugopolski
,
C.
,
Shortkroff
,
S.
,
Kennedy
,
S.
, and
Bonassar
,
L. J.
,
2017
, “
Correlating Rheological Properties and Printability of Collagen Bioinks: The Effects of Riboflavin Photocrosslinking and pH
,”
Biofabrication
,
9
(
3
), p.
034102
.10.1088/1758-5090/aa780f
36.
Chung
,
J. H.
,
Naficy
,
S.
,
Yue
,
Z.
,
Kapsa
,
R.
,
Quigley
,
A.
,
Moulton
,
S. E.
, and
Wallace
,
G. G.
,
2013
, “
Bio-Ink Properties and Printability for Extrusion Printing Living Cells
,”
Biomater. Sci.
,
1
(
7
), pp.
763
73
.10.1039/c3bm00012e
37.
Nelson
,
C.
,
Tuladhar
,
S.
,
Launen
,
L.
, and
Habib
,
M.
,
2021
, “
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels
,”
Int. J. Mol. Sci.
,
22
(
24
), p.
13481
.10.3390/ijms222413481
You do not currently have access to this content.