Polymeric heart valves have the potential to improve hemodynamic function without the complications associated with bioprosthetic and mechanical heart valves, but they have exhibited issues that need to be addressed including calcification, hydrolysis, low durability, and the adhesion of blood cells on the valves. These issues are attributed to the valves' material properties and surface conditions in addition to the hemodynamics. To overcome these issues, a new stentless, single-component trileaflet polymeric heart valve with engineered leaflet surface texture was designed, and prototypes were fabricated from a simple polymeric tube. The single-component structure features a trileaflet polymeric valve and conduit that are made of a single tube component to eliminate complications possibly caused by the interaction of multiple materials and components. This paper focuses on the leaflet surface modification and the effects of leaflet surface texture on blood cell adhesion to the leaflet surface. Silicone rubber was chosen as the working material. A magnetic abrasive finishing (MAF) process was used to alter the inner surface of the tubular mold in contact with the silicone leaflets during the curing process. It was hypothesized that the maximum profile height Rz of the mold surface should be smaller than the minimum platelet size of 1 μm to prevent platelets (1–3 μm in diameter) from becoming lodged between the peaks. Cell adhesion studies using human whole blood flushed at low shear stresses over leaflet surfaces with six different textures showed that adhesion of the platelets and red blood cells is greatly influenced by both surface roughness and lay. Leaflets replicated from MAF-produced mold surfaces consisting of short asperities smaller than 1 μm reduced blood cell adhesion and aggregation. Cell adhesion studies also found that either mold or leaflet surface roughness can be used as a measure of cell adhesion.

References

1.
Yoganathan
,
A.
,
He
,
Z.
, and
Jones
,
S.
,
2004
, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
,
6
, pp.
331
362
.10.1146/annurev.bioeng.6.040803.140111
2.
Dasi
,
L. P.
,
Simon
,
H. A.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
,
2009
, “
Fluid Mechanics of Artificial Heart Valves
,”
Clin. Exp. Pharmacol. Physiol.
,
36
, pp.
225
237
.10.1111/j.1440-1681.2008.05099.x
3.
Edmunds
,
L. H.
,
Mckinlay
,
S.
,
Anderson
,
J. M.
,
Callahan
,
T. H.
,
Chesebro
,
J. H.
,
Geiser
,
E. A.
,
Makanani
,
D. M.
,
McIntire
,
L. V.
,
Meeker
,
W. Q.
,
Naughton
,
G. K.
,
Panza
,
J. A.
,
Schoen
,
F. J.
, and
Didisheim
,
P.
,
1997
, “
Directions for Improvement of Substitute Heart Valves: National Heart, Lung, and Blood Institute's Working Group Report on Heart Valves
,”
J. Biomed. Mater. Res.
,
38
(
3
), pp.
263
266
.10.1002/(SICI)1097-4636(199723)38:3<263::AID-JBM11>3.0.CO;2-C
4.
Zilla
,
P.
,
Brink
,
J.
,
Human
,
P.
, and
Bezuidenhout
,
D.
,
2008
, “
Prosthetic Heart Valves: Catering for the Few
,”
Biomaterials
,
29
(
4
), pp.
385
406
.10.1016/j.biomaterials.2007.09.033
5.
Sun
,
J. C.
,
Davidson
,
M. J.
,
Lamy
,
A.
, and
Eikelboom
,
J. W.
,
2009
, “
Antithrombotic Management of Patients With Prosthetic Heart Valves: Current Evidence and Future Trends
,”
Lancet
,
374
(
9689
), pp.
565
576
.10.1016/S0140-6736(09)60780-7
6.
Zadeh
,
P. B.
,
2009
, “
Calcification of Polyurethane Heart Valve Prosthesis
,” M.S. thesis, Northeastern University, Boston, MA.
7.
Colas
,
A.
, and
Curtis
,
J.
,
2004
, “
Silicone Biomaterials: History and Chemistry
,”
Biomaterials Science: An Introduction to Materials in Medicine
, 2nd ed.,
D. R.
Ratner
,
A. S.
Hoffman
,
F. J.
Schoen
, and
J. E.
Lemons
, eds.,
Elsevier
,
New York
, pp.
80
85
.
8.
Ghanbari
,
H.
,
Viatge
,
H.
,
Kidane
,
A. G.
,
Burriesci
,
G.
,
Tavakoli
,
M.
, and
Seifalian
,
A. M.
,
2009
, “
Polymeric Heart Valves: New Materials, Emerging Hopes
,”
Trends Biotechnol.
,
27
(
6
), pp.
359
367
.10.1016/j.tibtech.2009.03.002
9.
Zdrahala
,
R. J.
, and
Zdrahala
,
I. J.
,
1999
, “
Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future
,”
J. Biomater. Appl.
,
14
(
1
), pp.
67
90
.10.1177/088532829901400104
10.
Sachweh
,
J. S.
, and
Daebritz
,
S. H.
,
2006
, “
Novel ‘Biomechanical’ Polymeric Valve Prostheses With Special Design for Aortic and Mitral Position: A Future Option for Pediatric Patients?
,”
ASAIO J.
,
52
(
5
), pp.
575
580
.10.1097/01.mat.0000237695.87457.2a
11.
Daebritz
,
S. H.
,
Sachweh
,
J. S.
,
Hermanns
,
B.
,
Fausten
,
B.
,
Franke
,
A.
,
Groetzner
,
J.
,
Klosterhalfen
,
B.
, and
Messmer
,
B. J.
,
2003
, “
Introduction of a Flexible Polymeric Heart Valve Prosthesis With Special Design for Mitral Position
,”
Circulation
,
108
, pp.
II-134
II-139
.10.1161/01.cir.0000087655.41288.dc
12.
Kidane
,
A. G.
,
Burriesci
,
G.
,
Edirisinghe
,
M.
,
Ghanbari
,
H.
,
Bonhoeffer
,
P.
, and
Seifalian
,
A. M.
,
2009
, “
A Novel Nanocomposite Polymer for Development of Synthetic Heart Valve Leaflets
,”
Acta Biomater.
,
5
(
7
), pp.
2409
2417
.10.1016/j.actbio.2009.02.025
13.
Mohammadi
,
H.
, and
Mequanint
,
K.
,
2011
, “
Prosthetic Aortic Heart Valves: Modeling and Design
,”
Med. Eng. Phys.
,
33
(
2
), pp.
131
147
.10.1016/j.medengphy.2010.09.017
14.
Korossis
,
S. A.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2000
, “
Cardiac Valve Replacement: A Bioengineering Approach
,”
Biomed. Mater. Eng.
,
10
, pp.
83
124
.
15.
Bach
,
D. S.
,
David
,
T.
,
Yacoub
,
M.
,
Pepper
,
J.
,
Goldman
,
B.
,
Wood
,
J.
,
Verrier
,
E.
,
Petracek
,
M.
,
Aldrete
,
V.
,
Rosenbloom
,
M.
,
Azar
,
H.
, and
Rakowski
,
H.
,
1998
, “
Hemodynamics and Left Ventricular Mass Regression Following Implantation of the Toronto SPV Stentless Porcine Valve
,”
Am. J. Cardiol.
,
82
(
10
), pp.
1214
1219
.10.1016/S0002-9149(98)00607-9
16.
Mohandas
,
N.
,
Hochmuth
,
R. M.
, and
Spaeth
,
E. E.
,
1974
, “
Adhesion of Red Cells to Foreign Surfaces in the Presence of Flow
,”
J. Biomed. Mater. Res.
,
8
(
2
), pp.
119
136
.10.1002/jbm.820080203
17.
Milner
,
K. R.
,
Siedlecki
,
C. A.
, and
Snyder
,
A. J.
,
2005
, “
Development of Novel Submicron Textured Polyether (Urethane Urea) for Decreasing Platelet Adhesion
,”
ASAIO J.
,
51
(
5
), pp.
578
584
.10.1097/01.mat.0000171594.44974.89
18.
Martines
,
E.
,
McGhee
,
K.
,
Wilkinson
,
C.
, and
Curtis
,
A.
,
2004
, “
A Parallel-Plate Flow Chamber to Study Initial Cell Adhesion on a Nanofeatured Surface
,”
IEEE Trans. Nanobiosci.
,
3
(
2
), pp.
90
95
.10.1109/TNB.2004.828268
19.
Hallab
,
N. J.
,
Bundy
,
K. J.
,
O'Connor
,
K.
,
Moses
,
R. L.
, and
Jacobs
,
J. J.
,
2001
, “
Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion
,”
Tissue Eng.
,
7
(
1
), pp.
55
71
.10.1089/107632700300003297
20.
Thapa
,
A.
,
Webster
,
T.
, and
Haberstroh
,
K.
,
2003
, “
Polymers With Nano-Dimensional Surface Features Enhance Bladder Smooth Muscle Cell Adhesion
,”
J. Biomed. Mater. Res.
,
67A
(
4
), pp.
1374
1383
.10.1002/jbm.a.20037
21.
Stavridi
,
M.
,
Katsikogianni
,
M.
, and
Missirlis
,
Y. F.
,
2003
, “
The Influence of Surface Patterning and/or Sterilization on the Haemocompatibility of Polycaprolactones
,”
Mater. Sci. Eng.
, C,
23
(
3
), pp.
359
365
.10.1016/S0928-4931(02)00287-4
22.
Kuwahara
,
M.
,
Sugimoto
,
M.
,
Tsuji
,
S.
,
Matsui
,
H.
,
Mizuno
,
T.
,
Miyata
,
S.
, and
Yoshioka
,
A.
,
2002
, “
Platelet Shape Changes and Adhesion Under High Shear Flow
,”
Arterioscler., Thromb., Vasc. Biol.
,
22
(
2
), pp.
329
334
.10.1161/hq0202.104122
23.
Park
,
J. Y.
,
Gemmell
,
C. H.
, and
Davies
,
J. E.
,
2001
, “
Platelet Interactions With Titanium: Modulation of Platelet Activity by Surface Topography
,”
Biomaterials
,
22
(
19
), pp.
2671
2682
.10.1016/S0142-9612(01)00009-6
24.
Curtis
,
A.
, and
Wilkinson
,
C.
,
1997
, “
Topographical Control of Cells
,”
Biomaterials
,
18
(
24
), pp.
1573
1583
.10.1016/S0142-9612(97)00144-0
25.
Milner
,
K.
, and
Siedlecki
,
C.
,
2007
, “
Fibroblast Response is Enhanced by Poly(L-Lactic Acid) Nanotopography Edge Density and Proximity
,”
Int. J. Nanomedicine
,
2
(
2
), pp.
201
211
.
26.
Weston
,
M. W.
,
Laborde
,
D. V.
, and
Yoganathan
,
A. P.
,
1999
, “
Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet
,”
Ann. Biomed. Eng.
,
27
, pp.
572
579
.10.1114/1.199
27.
Sato
,
T.
,
Yamaguchi
,
H.
,
Shinmura
,
T.
, and
Okazaki
,
T.
,
2006
, “
Study of Surface Finishing Process Using Magneto-Rheological Fluid (MRF)—2nd Report: Effects of the Finishing Behavior of MRF-Based Slurry on Finishing Characteristics
,”
J. Jpn. Soc. Precis. Eng.
,
72
(
11
), pp.
1402
1406
(in Japanese).
28.
Yamaguchi
,
H.
,
Shinmura
,
T.
, and
Kobayashi
,
A.
,
2001
, “
Development of an Internal Magnetic Abrasive Finishing Process for Nonferromagnetic Complex Shaped Tubes
,”
JSME Int. J., Ser. C
,
44
(
1
), pp.
275
281
.10.1299/jsmec.44.275
29.
Kidane
,
A. G.
,
Burriesci
,
G.
,
Cornejo
,
P.
,
Dooley
,
A.
,
Sarkar
,
S.
,
Bonhoeffer
,
P.
,
Edirisinghe
,
M.
, and
Seifalian
,
A. M.
,
2009
, “
Current Developments and Future Prospects for Heart Valve Replacement Therapy
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
88B
(
1
), pp.
290
303
.10.1002/jbm.b.31151
30.
Daniels
,
A. U.
,
2012
, “
Silicone Breast Implant Materials
,”
Swiss Med. Wkly
,
142
,
w13614
.
31.
Roe
,
B. B.
,
Kelly
,
P. B.
,
Myers
,
J. L.
, and
Moore
,
D. W.
,
1966
, “
Tricuspid Leaflet Aortic Valve Prosthesis
,”
Circulation
,
33
, pp.
124
127
.10.1161/01.CIR.33.4S1.I-124
32.
Kannan
,
R. Y.
,
Salacinski
,
H. J.
,
Ghanavi
,
J.
,
Narula
,
A.
,
Odlyha
,
M.
,
Peirovi
,
H.
,
Butler
,
P. E.
, and
Seifalian
,
A. M.
,
2007
, “
Silsesquioxane Nanocomposites as Tissue Implants
,”
Plast. Reconstr. Surg.
,
119
(
6
), pp.
1653
1662
.10.1097/01.prs.0000246404.53831.4c
33.
Ghanbari
,
H.
,
Kidane
,
A. G.
,
Burriesci
,
G.
,
Ramesh
,
B.
,
Darbyshire
,
A.
, and
Seifalian
,
A. M.
,
2010
, “
The Anti-Calcification Potential of a Silsesquioxane Nanocomposite Polymer Under In Vitro Conditions: Potential Material for Synthetic Leaflet Heart Valve
,”
Acta Biomater.
,
6
, pp.
4249
4260
.10.1016/j.actbio.2010.06.015
34.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Ghanbari
,
H.
,
Burriesci
,
G.
, and
Seifalian
,
A. M.
, “
Manufacturing and Hydrodynamic Assessment of a Novel Aortic Valve Made of a New Nanocomposite Polymer
,”
J. Biomech.
,
45
(
7
), pp.
1205
1211
.10.1016/j.jbiomech.2012.01.046
35.
Goodman
,
S. L.
,
1999
, “
Sheep, Pig, and Human Platelet—Material Interactions With Model Cardiovascular Biomaterials
,”
J. Biomed. Mater. Res.
,
45
, pp.
240
250
.10.1002/(SICI)1097-4636(19990605)45:3<240::AID-JBM12>3.0.CO;2-C
36.
Chung
,
S.
,
Im
,
Y.
,
Kim
,
H.
,
Jeong
,
H.
, and
Dornfeld
,
D. A.
,
2003
, “
Evaluation of Micro-Replication Technology Using Silicone Rubber Molds and Its Applications
,”
Int. J. Mach. Tools Manuf.
,
43
(
13
), pp.
1337
1345
.10.1016/S0890-6955(03)00164-0
37.
Yamaguchi
,
H.
, and
Hanada
,
K.
,
2008
, “
Development of Spherical Magnetic Abrasive Made by Plasma Spray
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031107
.10.1115/1.2917353
You do not currently have access to this content.