We are presenting a novel, non-biologic model of the healthy human annulus. This lumbar Total Disc Model (TDM) ideally would be both biofidelic and sufficiently robust to withstand long-term fatigue testing without breaking down or tearing apart. Mechanical validation testing was performed to confirm that the compressive and torsional properties were similar to literature values of denucleated human lumbar discs in two-body constructs. Long-term fatigue tests were performed to establish the durability of the model. We have reported data for both our empty TDM and the TDM filled with a representative nucleus replacement device (NRD). The silicone model is geometrically equivalent to the healthy human lumbar disc, including the discoid cavity present following a total nuclectomy, the annulus fibrosis with micro-annulotomy, and the cartilaginous endplates. The pressure transmitted through the center of the disc went from negligible when the TDM was empty to over 40% when the TDM was filled. The compression stiffness was 992±15 N/mm for the empty TDM and 1583±136 N/mm for the filled TDM. The torsional stiffness was 0.505±0.024 Nm/° for the empty and 0.550±0.056 Nm/° for the filled TDM. Lastly, the only mechanical damage suffered by either empty or filled TDMs during dynamic testing came from debonding from the endplates at higher torque levels. No damage was seen during dynamic compression testing. After determining the appropriate geometry for the TDM, validation testing was performed to ensure that the load sharing, compressive, and torsional properties were similar to the native human disc. The silicone model was durable enough to avoid tearing or mechanical failure at physiologic loads. This study demonstrated that a silicone total disc model was developed with appropriate properties necessary for determining the mechanical degradation properties of a NRD and will not mechanical fail at physiologic loads.

1.
Waddell
,
G.
, 1996, “
Low Back Pain: A Twentieth Century Health Care Enigma
,”
Spine
0362-2436,
21
(
24
), pp.
2820
2825
.
2.
Weinstein
,
J. N.
,
Lurie
,
J. D.
,
Tosteson
,
T. D.
,
Skinner
,
J. S.
,
Hanscom
,
B.
,
Tosteson
,
A. N.
, et al.
, 2006, “
Surgical vs Nonoperative Treatment for Lumbar Disk Herniation: The Spine Patient Outcomes Research Trial (SPORT) Observational Cohort
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
296
(
20
), pp.
2451
2459
.
3.
Hedman
,
T. P.
,
Kostuik
,
J. P.
,
Fernie
,
G. R.
, and
Hellier
,
W. G.
, 1991, “
Design of an Intervertebral Disc Prosthesis
,”
Spine
0362-2436,
16
(
6
), pp.
S256
S260
.
4.
Hudgins
,
R. G.
, and
Bao
,
Q.
, 2003, “
Durability Test Method for a Prosthetic Nucleus (PN)
,”
Spinal Implants: Are We Evaluating Them Appropriately?
M. N.
Melkerson
,
J. S.
Kirkpatrick
, and
S. L.
Griffith
, eds.,
ASTM International
West Conshohocken, Pennsylvania
, pp.
127
140
.
5.
Myers
,
M.
, 2002, “
Understanding the Endplate Changes Associated With Disc Surgery
,” SAS Spine Arthroplasty Society.
6.
Hou
,
T.
,
Tu
,
K.
,
Xu
,
Y.
,
Li
,
Z.
,
Cai
,
A.
, and
Wang
,
H.
, 1991, “
Lumbar Intervertebral Disc Prosthesis: An Experimental Study
,”
Chin. Med. J. (Engl)
0366-6999,
104
(
5
), pp.
381
386
.
7.
Roy-Camille
,
R.
,
Saillant
,
G.
, and
Lavaste
,
F.
1978, “
Experimental study of Lumber Disk Replacement
,”
Rev. Chir. Orthop. Reparatrice Appar Mot
0035-1040,
64
(
2
), pp.
106
107
.
8.
Yamada
,
H.
, 1970,
Strength of Biological Materials
,
The Williams & Wilkins Company
,
Baltimore
.
9.
Natarajan
,
R. N.
,
Williams
,
J. R.
, and
Andersson
,
G. B.
, 2006, “
Modeling Changes in Intervertebral Disc Mechanics With Degeneration
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
(
2
), pp.
36
40
.
10.
Fagan
,
M. J.
,
Julian
,
S.
,
Siddall
,
D. J.
, and
Mohsen
,
A. M.
, 2002, “
Patient-Specific Spine Models. Part 1: Finite Element Analysis of the Lumbar Intervertebral Disc—A Material Sensitivity Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119
216
(
5
), pp.
299
314
.
11.
White
,
A.
, III
, and
Panjabi
,
M.
, 1990,
Clinical Biomechanics of the Spine
, 2nd ed,
J. B. Lippincott
,
Philadelphia, Pennsylvania
.
12.
Makhsous
,
M.
,
Lin
,
F.
,
Hendrix
,
R. W.
,
Hepler
,
M.
, and
Zhang
,
L. Q.
, 2003, “
Sitting With Adjustable Ischial and Back Supports: Biomechanical Changes
,”
Spine
0362-2436,
28
(
11
), pp.
1113
1121
.
13.
Shao
,
Z.
,
Rompe
,
G.
, and
Schiltenwolf
,
M.
, 2002, “
Radiographic Changes in the Lumbar Intervertebral Discs and Lumbar Vertebrae With Age
,”
Spine
0362-2436,
27
(
3
), pp.
263
268
.
14.
Mochida
,
J.
,
Toh
,
E.
,
Nomura
,
T.
, and
Nishimura
,
K.
, 2001, “
The Risks and Benefits of Percutaneous Nucleotomy for Lumbar Disc Herniation. A 10-Year Longitudinal Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
83
(
4
), pp.
501
505
.
15.
Hall
,
L. T.
,
Esses
,
S. I.
,
Noble
,
P. C.
, and
Kamaric
,
E.
, 1998, “
Morphology of the Lumbar Vertebral Endplates
,”
Spine
0362-2436,
23
, pp.
1517
1522
.
16.
Cappello
,
J.
, 1997, “
Genetically Engineered Protein Polymers
,”
Handbook of Biodegradable Polymers
,
A. J.
Domb
,
J.
Kost
, and
D.
Wiseman
, eds.,
Harwood Academic
,
Amsterdam
, pp.
387
414
.
17.
Goel
,
V. K.
,
Panjabi
,
M. M.
,
Patwardhan
,
A. G.
,
Dooris
,
A. P.
, and
Serhan
,
H.
, 2006, “
Test Protocols for Evaluation of Spinal Implants
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
(
2
), pp.
103
109
.
18.
Edwards
,
W. T.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
, 2001, “
Peak Stresses Observed in the Posterior Lateral Annulus
,”
Spine
0362-2436,
26
(
16
), pp.
1753
1759
.
19.
Kulak
,
R. F.
,
Belytschko
,
T. B.
, and
Schultz
,
A. B.
, 1976, “
Nonlinear Behavior of the Human Intervertebral Disc Under Axial Load
,”
J. Biomech.
0021-9290,
9
(
6
), pp.
377
386
.
20.
Markolf
,
K. L.
, and
Morris
,
J. M.
, 1974, “
The Structural Components of the Intervertebral Disc. A Study of Their Contributions to the Ability of the Disc to Withstand Compressive Forces
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
4
), pp.
675
687
.
21.
Markolf
,
K. L.
, 1972, “
Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads: A Biomechanical Study Using Autopsy Material
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
54
(
3
), pp.
511
533
.
22.
Brown
,
T.
,
Hansen
,
R. J.
, and
Yorra
,
A. J.
, 1957, “
Some Mechanical Tests on the Lumbosacral Spine With Particular Reference to the Intervertebral Discs
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
39-A
(
5
), pp.
1135
1164
.
23.
Hirsch
,
C.
, 1955, “
The Reaction of Intervertebral Discs to Compression Forces
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
37-A
(
6
), pp.
1188
1196
.
24.
Virgin
,
W. J.
, 1951, “
Experimental Investigations into the Physical Properties of the Intervertebral Disc
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
33-b
(
4
), pp.
607
611
.
25.
Spenciner
,
D. B.
,
Paiva
,
J. A.
, and
Crisco
,
J. J.
, 2003, “
Testing Human Cadaveric Functional Spinal Units to the ASTM Draft Standard
,” Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial Discs, West Conshohocken, PA.
26.
Fagan
,
M. J.
,
Gillespie
,
P.
,
Julian
,
S.
,
Siddall
,
D.
, and
Mohsen
,
A. M. M. A.
, 2001, “
Development of an Artificial Intervertebral Disc for a Labaratory Test Spine
,”
J. Biomech.
0021-9290,
34
, pp.
S57
S90
.
27.
Schultz
,
A. B.
,
Warwick
,
D. N.
,
Berkson
,
M. H.
, and
Nachemson
,
A. L.
, 1979, “
Mechanical Properties of Human Lumbar Spine Motion Segments--Part I: Responses in Flexion, Extension, Lateral Bending, and Torsion
,”
ASME J. Biomech. Eng.
0148-0731,
101
, pp.
46
52
.
28.
Janevic
,
J.
,
Ashton-Miller
,
J. A.
, and
Schultz
,
A. B.
, 1991, “
Large Compressive Preloads Decrease Lumbar Motion Segment Flexibility
,”
J. Orthop. Res.
0736-0266,
9
(
2
), pp.
228
236
.
29.
Abumi
,
K.
,
Panjabi
,
M. M.
,
Kramer
,
K. M.
,
Duranceau
,
J.
,
Oxland
,
T.
, and
Crisco
,
J. J.
, 1990, “
Biomechanical Evaluation of Lumbar Spinal Stability After Graded Facetectomies
,”
Spine
0362-2436,
15
(
11
), pp.
1142
1147
.
30.
Spenciner
,
D. B.
,
Greene
,
D.
,
Paiva
,
J.
,
Palumbo
,
M.
, and
Crisco
,
J. J.
, 2006, “
The Multidirectional Bending Properties of the Human Lumbar Intervertebral Disc
,”
Spine
0362-2436,
6
(
3
), pp.
248
257
.
31.
Frei
,
H.
,
Oxland
,
T. R.
,
Rathonyi
,
G. C.
, and
Nolte
,
L. P.
, 2001, “
The Effect of Nucleotomy on Lumbar Spine Mechanics in Compression and Shear Loading
,”
Spine
0362-2436,
26
(
19
), pp.
2080
2089
.
You do not currently have access to this content.