Abstract

Three-dimensional bioprinting offers a novel strategy to create large-scale complex tissue models. Nowadays, layer by layer fabrication is used to create patient specific tissue substitutes. However, commercially available bioprinters cannot be widely used especially in small research facilities due to their high cost, and may not be suitable for bioprinting of complex tissue models. Besides, most of the systems are not capable of providing the required working conditions. The aim of this study is to design and assemble of a low-cost H-Bot based bioprinter that allows multimicro-extrusion to form complex tissue models in a closed cabin and sterile conditions. In this study, a micro-extrusion based bioprinter, Bio-Logic, with three different print heads, namely, Universal Micro-Extrusion Module (UMM), Multi-Micro-Extrusion Module (MMM), and Ergonomic Multi-Extrusion Module (EMM) were developed. The print heads were tested and scaffold models were bioprinted and analyzed. Bio-Logic was compared in price with the commercially available bioprinters. Scaffold fabrication was successfully performed with Bio-Logic. The average pore size of the scaffold was determined as 0.37±0.04 mm (n = 20). Total cost of Bio-Logic was considerably less than any other commercially available bioprinters. A new system is developed for bioprinting of complex tissue models. The cost of the system is appropriate for research and features of the device may be upgraded according to the needs. Bio-Logic is the first H-Bot kinematics based bioprinter and has ability to measure atmospheric conditions in a closed cabin.

References

1.
McElheny
,
C. A.
,
2015
, “
Development of a Three-Dimensional Bioprinter With Inline Light Activation for Bone Tissue Engineering
,”
Master thesis
,
Louisiana State University, Baton Rouge, LA
.https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=4613&context=gradschool_theses
2.
American Transplant Foundation
,
2018
, “
Facts and Myths
,” American Transplant Foundation, Denver, CO, accessed Jan. 29, 2019, americantransplantfoundation.org/about-transplant/facts-and-myths
3.
Ghosheh
,
M.
,
Daloo
,
H.
,
Usta
,
Y. H.
,
İşler
,
Y.
, and
Karaman
,
O.
,
2016
, “
Development of Innovative Custom Design Bioprinter
,” Proceedings of the 20th National Biomedical Engineering Meeting (
BIYOMUT
), Izmir, Turkey, Nov. 3–5, pp.
1
4
.10.1109/BIYOMUT.2016.7849409
4.
McElheny
,
C.
,
Hayes
,
D.
, and
Devireddy
,
R.
,
2017
, “
Design and Fabrication of a Low-Cost Three-Dimensional Bioprinter
,”
ASME J. Med. Devices
,
11
(
4
), p.
041001
.10.1115/1.4037259
5.
Aydin
,
L.
,
Küçük
,
A. P. S.
, and
Kenar
,
A. P. H.
,
2016
, “
Design and Construction of a Novel Micro-Extrusion System for Bio-Printing Applications
,”
Int. J. Appl. Math. Electron. Comput.
,
4
(
1
), pp.
52
56
.10.18100/ijamec.264681.
6.
Charbe
,
N.
,
McCarron
,
P. A.
, and
Tambuwala
,
M. M.
,
2017
, “
Three-Dimensional Bio-Printing: A New Frontier in Oncology Research
,”
World J. Clin. Oncol.
,
8
(
1
), p.
21
.10.5306/wjco.v8.i1.21
7.
Langer
,
R.
, and
Vacanti
,
J. P.
,
1993
, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.10.1126/science.8493529
8.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.10.1038/nbt.2958
9.
Li
,
X.
,
Cui
,
R.
,
Sun
,
L.
,
Aifantis
,
K. E.
,
Fan
,
Y.
,
Feng
,
Q.
,
Cui
,
F.
, and
Watari
,
F.
,
2014
, “
3D-Printed Biopolymers for Tissue Engineering Application
,”
Int. J. Polym. Sci.
,
2014
, pp.
1
13
.10.1155/2014/829145
10.
Bhat
,
S. V.
,
2002
, “
Overview of Biomaterials
,”
Biomaterials
,
Springer
,
Dordrecht, The Netherlands
.
11.
Klebe
,
R. J.
,
1988
, “
Cytoscribing: A Method for Micropositioning Cells and the Construction of Two-and Three-Dimensional Synthetic Tissues
,”
Exp. Cell Res.
,
179
(
2
), pp.
362
373
.10.1016/0014-4827(88)90275-3
12.
Wilson
,
W. C.
, and
Boland
,
T.
,
2003
, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anat. Rec., Part A
,
272A
(
2
), pp.
491
496
.10.1002/ar.a.10057
13.
Xie
,
Z.
,
Gao
,
M.
,
Lobo
,
A. O.
, and
Webster
,
T. J.
,
2020
, “
3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid
,”
Polymers
,
12
(
8
), p.
1717
.10.3390/polym12081717
14.
Lee
,
J. M.
, and
Yeong
,
W. Y.
,
2016
, “
Design and Printing Strategies in 3D Bioprinting of Cell‐Hydrogels: A Review
,”
Adv. Healthcare Mater.
,
5
(
22
), pp.
2856
2865
.10.1002/adhm.201600435
15.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D.-H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
.10.1016/j.biotechadv.2015.12.011
16.
Liu
,
W.
,
Zhang
,
Y. S.
,
Heinrich
,
M. A.
,
De Ferrari
,
F.
,
Jang
,
H. L.
,
Bakht
,
S. M.
, and
Alvarez
,
M. M.
, et al.,
2017
, “
Rapid Continuous Multimaterial Extrusion Bioprinting
,”
Adv. Mater.
,
29
(
3
), pp.
1
8
.10.1002/adma.201770016
17.
Obregon
,
F.
,
Vaquette
,
C.
,
Ivanovski
,
S.
,
Hutmacher
,
D. W.
, and
Bertassoni
,
L. E.
,
2015
, “
Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering
,”
J. Dent. Res.
,
94
(
9 Suppl
.), pp.
143S
152S
.10.1177/0022034515588885
18.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.10.1016/j.biomaterials.2004.04.011
19.
Bajaj
,
P.
,
Schweller
,
R. M.
,
Khademhosseini
,
A.
,
West
,
J. L.
, and
Bashir
,
R.
,
2014
, “
3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
247
276
.10.1146/annurev-bioeng-071813-105155
20.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
.10.1016/j.biomaterials.2015.10.076
21.
Choudhury
,
D.
,
Anand
,
S.
, and
Naing
,
M. W.
,
2018
, “
The Arrival of Commercial Bioprinters–Towards 3D Bioprinting Revolution
,”
Int. J. Bioprint.
,
4
(
2
), p.
139
.10.18063/ijb.v4i2.139
22.
Billiet
,
T.
,
Gevaert
,
E.
,
De Schryver
,
T.
,
Cornelissen
,
M.
, and
Dubruel
,
P.
,
2014
, “
The 3D Printing of Gelatin Methacrylamide Cell-Laden Tissue-Engineered Constructs With High Cell Viability
,”
Biomaterials
,
35
(
1
), pp.
49
62
.10.1016/j.biomaterials.2013.09.078
23.
Ouyang
,
L.
,
Highley
,
C. B.
,
Rodell
,
C. B.
,
Sun
,
W.
, and
Burdick
,
J. A.
,
2016
, “
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels With Secondary Cross-Linking
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1743
1751
.10.1021/acsbiomaterials.6b00158
24.
Blaeser
,
A.
,
Duarte Campos
,
D. F.
,
Puster
,
U.
,
Richtering
,
W.
,
Stevens
,
M. M.
, and
Fischer
,
H.
,
2016
, “
Controlling Shear Stress in 3D Bioprinting Is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
,”
Adv. Healthcare Mater.
,
5
(
3
), pp.
326
333
.10.1002/adhm.201500677
25.
Horváth
,
L.
,
Umehara
,
Y.
,
Jud
,
C.
,
Blank
,
F.
,
Petri-Fink
,
A.
, and
Rothen-Rutishauser
,
B.
,
2015
, “
Engineering an In Vitro Air-Blood Barrier by 3D Bioprinting
,”
Sci. Rep.
,
5
(
1
), p.
7974
.10.1038/srep07974
26.
Bose
,
S.
,
Vahabzadeh
,
S.
, and
Bandyopadhyay
,
A.
,
2013
, “
Bone Tissue Engineering Using 3D Printing
,”
Mater. Today
,
16
(
12
), pp.
496
504
.10.1016/j.mattod.2013.11.017
27.
Ferris
,
C. J.
,
Gilmore
,
K. G.
,
Wallace
,
G. G.
, and
In Het Panhuis
,
M.
,
2013
, “
Biofabrication: An Overview of the Approaches Used for Printing of Living Cells
,”
Appl. Microbiol. Biotechnol.
,
97
(
10
), pp.
4243
4258
.10.1007/s00253-013-4853-6
28.
Weikert
,
S.
,
Ratnaweera
,
R.
,
Zirn
,
O.
, and
Wegener
,
K.
,
2011
, “
Modeling and Measurement of h-Bot Kinematic Systems
,”
Am. Soc. Precis. Eng.
,
2011
(
6
), pp.
1
4
.https://www.iwf.mavt.ethz.ch/ConfiguratorJM/publications/MODELING_A_132687166151936/3314_mod.pdf
29.
Vuola
,
A.
,
Heikkilä
,
R.
,
Prusi
,
T.
,
Remes
,
M.
,
Rokka
,
P.
,
Siltala
,
N.
, and
Tuokko
,
R.
,
2010
, “
Miniaturization of Flexible Screwing Cell
,” Proceedings of the International Precision Assembly Seminar (
IPAS
), Chamonix, France,
Springer
,
Berlin
, pp.
309
316
.10.1007/978-3-642-11598-1_36
30.
Idà
,
E.
,
Nanetti
,
F.
, and
Mottola
,
G.
,
2022
, “
An Alternative Parallel Mechanism for Horizontal Positioning of a Nozzle in an FDM 3D Printer
,”
Machines
,
10
(
7
), p.
542
.10.3390/machines10070542
31.
Demirkol
,
N.
,
Nuzhet Oktar
,
F.
, and
Sabri Kayali
,
E.
,
2013
, “
Influence of Commercial Inert Glass Addition on the Mechanical Properties of Commercial Synthetic Hydroxyapatite
,”
Acta Phys. Pol., A
,
123
(
2
), pp.
427
429
.10.12693/APhysPolA.123.427
32.
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
A Multi-Material Bioprinting Platform Towards Stratified Articular Cartilage Tissue Fabrication
,”
Proceedings of the IIE Annual Conference and Expo 2013, San Juan, Puerto Rico, May 18–22,
p.
2246
.
33.
Shim
,
J.-H.
,
Lee
,
J.-S.
,
Kim
,
J. Y.
, and
Cho
,
D.-W.
,
2012
, “
Bioprinting of a Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using a Multi-Head Tissue/Organ Building System
,”
J. Micromech. Microeng.
,
22
(
8
), p.
085014
.10.1088/0960-1317/22/8/085014
You do not currently have access to this content.