Abstract

Retinal membrane peeling requires delicate manipulation. The presence of the surgeon's physiological tremor, the high variability and often low quality of the ophthalmic image, and excessive forces make the tasks more challenging. Preventing unintended movement caused by tremor and unintentional forces can reduce membrane injury. With the use of an actively stabilized handheld robot, we employ a monocular camera-based surface reconstruction method to estimate the retinal plane and we propose the use of a virtual fixture with the application of a hard stop and motion scaling to improve control of the tool tip during delaminating in a laboratory simulation of retinal membrane peeling. A hard stop helps to limit downward force exerted on the surface. Motion scaling also improves the user's control of contact force when delaminating. We demonstrate a reduction of maximum force and maximum surface-penetration distance from the estimated retinal plane using the proposed technique.

References

1.
Guber
,
J.
,
Pereni
,
I.
,
Scholl
,
H. P.
,
Guber
,
I.
, and
Haynes
,
R. J.
,
2019
, “
Outcomes After Epiretinal Membrane Surgery With or Without Internal Limiting Membrane Peeling
,”
Ophthalmol. Ther.
,
8
(
2
), pp.
297
303
.10.1007/s40123-019-0185-7
2.
Mao
,
J.
,
Wu
,
H.
,
Liu
,
C.
,
Zhu
,
C.
,
Lao
,
J.
,
Chen
,
Y.
,
Tao
,
J.
,
Zhang
,
Y.
, and
Shen
,
L.
,
2019
, “
Changes in Metamorphopsia, Visual Acuity, and Central Macular Thickness After Epiretinal Membrane Surgery in Four Preoperative Stages Classified With Oct b-Scan Images
,”
J. Ophthalmol.
,
2019
, pp.
1
8
.10.1155/2019/7931654
3.
Date
,
R. C.
,
Chang
,
E. Y.
, and
Shah
,
V. S.
,
2021
, “
Outer Retinal Injury Secondary to Membrane Peeling With Internal Limiting Membrane Forceps
,”
Retinal Cases Brief Rep.
,
15
(
3
), pp.
251
255
.10.1097/ICB.0000000000000775
4.
Gupta
,
P. K.
,
Jensen
,
P. S.
, and
de Juan
,
E.
,
1999
, “
Surgical Forces and Tactile Perception During Retinal Microsurgery
,”
Proceedings of Medical Image Computer Assisted Intervention
, Cambridge, UK, Sept. 19–22, pp.
1218
1225
.10.1007/10704282_132
5.
Balicki
,
M.
,
Uneri
,
A.
,
Iordachita
,
I.
,
Handa
,
J.
,
Gehlbach
,
P.
, and
Taylor
,
R.
,
2010
, “
Micro-Force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery
,”
Proceedings of Medical Image Computer Assisted Intervention
, Vol.
13
, Beijing, China, Sept. 20–24, pp.
303
310
.10.1007/978-3-642-15711-0_38
6.
Becker
,
B. C.
,
MacLachlan
,
R. A.
,
Lobes
,
L. A.
,
Hager
,
G. D.
, and
Riviere
,
C. N.
,
2013
, “
Vision-Based Control of a Handheld Surgical Micromanipulator With Virtual Fixtures
,”
IEEE Trans. Robot.
,
29
(
3
), pp.
674
683
.10.1109/TRO.2013.2239552
7.
Burk
,
S. E.
,
Da Mata
,
A. P.
,
Snyder
,
M. E.
,
Rosa
,
R. H.
, and
Foster
,
R. E.
,
2000
, “
Indocyanine Green-Assisted Peeling of the Retinal Internal Limiting Membrane
,”
Ophthalmology
,
107
(
11
), pp.
2010
2014
.10.1016/S0161-6420(00)00375-4
8.
Taylor
,
R.
,
Jensen
,
P.
,
Whitcomb
,
L.
,
Barnes
,
A.
,
Kumar
,
R.
,
Stoianovici
,
D.
,
Gupta
,
P.
,
Wang
,
Z.
,
de Juan
,
E.
, and
Kavoussi
,
L.
,
1999
, “
A Steady-Hand Robotic System for Microsurgical Augmentation
,”
Int. J. Robot. Res.
,
18
(
12
), pp.
1201
1210
.10.1177/02783649922067807
9.
Edwards
,
T. L.
,
Xue
,
K.
,
Meenink
,
H. C. M.
,
Beelen
,
M. J.
,
Naus
,
G. J. L.
,
Simunovic
,
M. P.
,
Latasiewicz
,
M.
,
Farmery
,
A.
,
de Smet
,
M. D.
, and
MacLaren
,
R. E.
,
2018
, “
First-in-Human Study of the Safety and Viability of Intraocular Robotic Surgery
,”
Nat. Biomed. Eng.
,
2
(
9
), pp.
649
656
.10.1038/s41551-018-0248-4
10.
Yang
,
S.
,
Martel
,
J. N.
,
Lobes
,
L. A.
, and
Riviere
,
C. N.
,
2018
, “
Techniques for Robot-Aided Intraocular Surgery Using Monocular Vision
,”
Int. J. Rob. Res.
,
37
(
8
), pp.
931
952
.10.1177/0278364918778352
11.
Yang
,
S.
,
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2015
, “
Manipulator Design and Operation for a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument
,”
IEEE ASME Trans. Mechatronics
,
20
(
2
), pp.
761
772
.10.1109/TMECH.2014.2320858
12.
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2009
, “
High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing
,”
IEEE Trans. Instrum. Meas.
,
58
(
6
), pp.
1991
2001
.10.1109/TIM.2008.2006132
13.
Mukherjee
,
S.
,
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2016
, “
Velocity-Limiting Control of an Active Handheld Micromanipulator
,”
ASME J. Med. Devices
,
10
(
3
), p. 030944.10.1115/1.4033806
14.
Choi
,
D. Y.
,
Sandoval
,
R.
,
MacLachlan
,
R. A.
,
Ho
,
L.
,
Lobes
,
L. A.
, and
Riviere
,
C. N.
,
2007
, “
Test of Tracing Performance With an Active Handheld Micromanipulator
,”
Proceedings of 29th Annual International IEEE Engineering in Medicine and Biology Society
, Lyon, France, Aug. 22–26, pp.
3638
3641
.10.1109/IEMBS.2007.4353119
15.
Lee
,
J. E.
,
Byon
,
I. S.
, and
Park
,
S. W.
,
2021
, “
Internal Limiting Membrane Peeling
,”
In Internal Limiting Membrane Surgery
,
Springer
, Singapore, pp.
27
30
.
You do not currently have access to this content.