Background. Cochlear implants have become an accepted and successful treatment for profound sensorineural deafness in both children and adults. Essential to the effective and efficient localized stimulation of the auditory nerves, is the position of the implant electrode array stimulating sites within the scala tympani (ST). However, the small size, delicate internal structures and helical shape of the cochlear chambers complicate the matter of precise positioning of the implant electrode array. The design, fabrication process, and in vitro testing of a fluid actuator to steer a thin-film electrode array is presented. The application chosen to show feasibility is for a cochlear implant, however, the actuator might be used for cortical electrode arrays, for example. Method of Approach. The actuator functions by a change of internal fluid pressure within one or more flattened and curled polymer microtubes, expanding the highly elliptical cross section of each tube thereby stiffening it and causing a change in its curling radius. The straightening from an initially helical shape allows insertion of an attached electrode array into the basal end of the in vitro cochlea and as the insertion proceeds the pressure is decreased allowing the straightened electrode array to controllably return to its initial helical shape. The allowable envelope of the scala tympani of a guinea pig was determined from published data and the actuator was designed and fabricated accordingly. Results. Multiple actuators were fabricated and tested in vitro. The insertion tests helped to confirm the viability of using this type of actuation to facilitate the insertion of an electrode array into the ST. These tests were performed in a minimal amount of time and often on the first attempt. The actuator reached the furthest extent of the in vitro cavity and achieved a position adjacent to the modiolus. Conclusions. In vitro insertion tests show that the actuator can deliver a thin-film electrode array to a depth of more than one turn into the in vitro scala tympani within a few minutes under open-loop, manual control.

1.
Spelman
,
F. A.
,
Clopton
,
B. M.
,
Voie
,
A.
,
Jolly
,
C. N.
,
Huynh
,
K.
,
Boogaard
,
J.
, and
Swanson
,
J. W.
, 1998, “
Cochlear Implant With Shape Memory Material and Method for Implanting the Same
,” US Patent No. 5,800,500.
2.
Kuzma
,
J. A.
, 2000, “
Cochlear Electrode Array With Positioning Stylet
,” US Patent No. 6,119,044.
3.
Kuzma
,
J. A.
, 2001, “
Cochlear Electrode System Including Distally Attached Flexible Positioner
,” US Patent No. 6,321,125.
4.
Bhatti
,
P. T.
,
Arcand
,
B. Y.
,
Wang
,
J.
,
Butual
,
N. V.
,
Friedrich
,
C. R.
, and
Wise
,
K. D.
, 2003, “
A High-Density Electrode Array for a Cochlear Prosthesis
,”
IEEE Intl. Conf. on Solid-State Sensors and Actuators (Transducers ’03)
, pp.
1750
1753
.
5.
Kennedy
,
D. W.
, 1987, “
Multi-Channel Intracochlear Electrodes: Mechanism of Insertion Trauma
,”
Laryngoscope
0023-852X,
97
, pp.
42
49
.
6.
Niparko
,
J. K.
,
Kemink
,
J. L.
,
Oviatt
,
D. L.
, and
Altschule
,
R. A.
, 1991, “
Evaluation of the Temporal Bones of Multichannel Cochlear Implant Patient
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
100
, pp.
914
921
.
7.
Chen
,
J. M.
,
Farb
,
F.
,
Hanusaik
,
L.
,
Shipp
,
D.
, and
Nedzelski
,
J. M.
, 1999, “
Depth and Quality of Electrode Insertion
,”
Am. J. Otol.
0192-9763,
20
, pp.
192
197
.
8.
Blamey
,
P. J.
,
Pyman
,
B. C.
,
Gordon
,
M. B.
,
Clark
,
G. M.
,
Brown
,
A. M.
,
Dowell
,
R. C.
, and
Hollow
,
R. D.
, 1992, “
Factors Predicting Post-Operative Sentence Scores in Post-lingually Deaf Cochlear Implant Patients
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
101
, pp.
342
348
.
9.
Cords
,
S. M.
,
Reute
,
G.
,
Issing
,
P. R.
,
Sommer
,
A.
,
Kuzma
,
J.
, and
Lenarz
,
T.
, 2000, “
A Silastic Positioner for Modiolus-Hugging Position of Intracochlear Electrodes: Electrophysiologic Effects
,”
Am. J. Otol.
0192-9763,
21
, pp.
212
217
.
10.
Frijns
,
J. H. M.
,
Briaire
,
J. J.
, and
Grote
,
J. J.
, 2001, “
The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multichannel Cochlear Implants
,”
Otol. Neurotol.
1531-7129,
22
, pp.
340
349
.
11.
Kawano
,
A.
,
Sheldon
,
H. L.
,
Clark
,
G. M.
,
Ramsden
,
R. T.
, and
Rain
,
C. H.
, 1998, “
Intracochlear Factors Contributing to Psychophysical Percepts Following Cochlear Implantation
,”
Acta Oto-Laryngol.
0001-6489,
118
, pp.
313
326
.
12.
Shepard
,
R. K.
,
Hatsushika
,
S.
, and
Clark
,
G. M.
, 1993, “
Electrical Stimulation of the Auditory Nerve: The Effect of Electrode Position on Neural Excitation
,”
Hear. Res.
0378-5955,
66
, pp.
108
122
.
13.
Rebscher
,
S. J.
,
Heilmann
,
M.
,
Bruszewski
,
W.
,
Talbot
,
N. H.
,
Snyder
,
R. L.
, and
Merzenich
,
M. M.
, 1999, “
Strategies to Improve Electrode Positioning and Safety in Cochlear Implants
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
, pp.
340
352
.
14.
Wardrop
,
P.
,
Whinney
,
D.
,
Rebscher
,
S. J.
,
Roland
,
J. T.
Jr.
,
Luxford
,
W.
, and
Leake
,
P. A.
, 2005, “
A Temporal Bone Study of Insertion Trauma and Intracochlear Position of Cochlear Implant Electrodes. I: Comparison of Nucleus Banded and Nucleus Contour Electrodes
,”
Hear. Res.
0378-5955,
203
, pp.
54
67
.
15.
Wardrop
,
P.
,
Whinney
,
D.
,
Rebscher
,
S. J.
,
Luxford
,
W.
, and
Leake
,
P. A.
, 2005, “
A Temporal Bone Study of Insertion Trauma and Intracochlear Position of Cochlear Implant Electrodes. II: Comparison of Spiral Clarion and HiFocus II Electrodes
,”
Hear. Res.
0378-5955,
203
, pp.
68
79
.
16.
Voie
,
A. H.
, 1996, “
Three Dimensional Reconstruction and Quantitative Analysis of the Mammalian Cochlea
,” Doctoral dissertation, University of Washington.
17.
Voie
,
A. H.
, 2002, “
Imaging the Intact Guinea Pig Tympanic Bulla by Orthogonal-Plane Fluorescence Optical Sectioning Microscopy
,”
Hear. Res.
0378-5955,
171
, pp.
119
128
.
18.
Pfingst
,
B. E.
, 2002, private communication,
Kresge Hearing Reasearch Institute
, University of Michigan.
19.
Lee
,
K.
, 1999,
Principles of CAD∕CAM∕CAE Systems
,
Addison-Wesley
,
Reading, MA
.
20.
Acrand
,
B. Y.
,
Bhatti
,
P. T.
,
Butala
,
N. V.
,
Wang
,
J.
,
Friedrich
,
C. R.
, and
Wise
,
K. D.
, 2004, “
Active Positioning Device for a Perimodiolar Cochlear Electrode Array
,”
Microsyst. Technol.
0946-7076,
10
, pp.
478
483
.
21.
Shyamsunder
,
S.
, 2004, “
An Electrokinetic Pumping System for a Cochlear Implant Insertion Tool
,” MS thesis, Michigan Technological University.
22.
Butala
,
N. V.
, 2003, “
An Actuated Cochlear Prosthesis Insertion Tool
,” MS thesis, Michigan Technological University.
You do not currently have access to this content.