Abstract

HeartPrinter is a novel under-constrained 3-cable parallel wire robot designed for minimally invasive epicardial interventions. The robot adheres to the beating heart using vacuum suction at its anchor points, with a central injector head that operates within the triangular workspace formed by the anchors, and is actuated by cables for multipoint direct gene therapy injections. Minimizing cable tensions can reduce forces on the heart at the anchor points while supporting rapid delivery of accurate injections and minimizing procedure time, risk of damage to the robot, and strain to the heart. However, cable tensions must be sufficient to hold the injector head's position as the heart moves and to prevent excessive cable slack. We pose a linear optimization problem to minimize the sum of cable tension magnitudes for HeartPrinter while ensuring the injector head is held in static equilibrium and the tensions are constrained within a feasible range. We use Karush-Kuhn-Tucker optimality conditions to derive conditional algebraic expressions for optimal cable tensions as a function of injector head position and workspace geometry, and we identify regions of injector head positions where particular combinations of cable tensions are optimally at minimum allowable tensions. The approach can rapidly solve for the minimum set of cable tensions for any robot workspace geometry and injector head position and determine whether an injection site is attainable.

References

1.
Cannatà
,
A.
,
Ali
,
H.
,
Sinagra
,
G.
, and
Giacca
,
M.
,
2020
, “
Gene Therapy for the Heart Lessons Learned and Future Perspectives
,”
Circulation Res.
,
126
(
10
), pp.
1394
1414
.10.1161/CIRCRESAHA.120.315855
2.
Ylä-Herttuala
,
S.
, and
Baker
,
A. H.
,
2017
, “
Cardiovascular Gene Therapy: Past, Present, and Future
,”
Mol. Ther.
,
25
(
5
), pp.
1095
1106
.10.1016/j.ymthe.2017.03.027
3.
Ishikawa
,
K.
,
Tilemann
,
L.
,
Fish
,
K.
, and
Hajjar
,
R. J.
,
2011
, “
Gene Delivery Methods in Cardiac Gene Therapy
,”
J. Gene Med.
,
13
(
10
), pp.
566
572
.10.1002/jgm.1609
4.
Katz
,
M.
,
Fargnoli
,
A.
,
Pritchette
,
L.
, and
Bridges
,
C. A.
,
2012
, “
Gene Delivery Technologies for Cardiac Applications
,”
Gene Ther.
,
19
(
6
), pp.
659
669
.10.1038/gt.2012.11
5.
Fromes
,
Y.
,
Salmon
,
A.
,
Wang
,
X.
,
Collin
,
H.
,
Rouche
,
A.
,
Hagège
,
A.
,
Schwartz
,
K.
, and
Fiszman
,
M. Y.
,
1999
, “
Gene Delivery to the Myocardium by Intrapericardial Injection
,”
Gene Ther.
,
6
(
4
), pp.
683
688
.10.1038/sj.gt.3300853
6.
Ishikawa
,
K.
,
Weber
,
T.
, and
Hajjar
,
R. J.
,
2018
, “
Human Cardiac Gene Therapy
,”
Circulation Res.
,.
123
(
5
), pp.
601
613
.10.1161/CIRCRESAHA.118.311587
7.
Donahue
,
J. K.
,
2016
, “
Cardiac Gene Therapy: A Call for Basic Methods Development
,”
Lancet
,
387
(
10024
), pp.
1137
1139
.10.1016/S0140-6736(16)00149-5
8.
Trivedi
,
A.
,
Hoffman
,
J.
, and
Arora
,
R.
,
2019
, “
Gene Therapy for Atrial Fibrillation - How Close to Clinical Implementation?
,”
Int. J. Cardiol.
,
296
, pp.
177
183
.10.1016/j.ijcard.2019.07.057
9.
Cleveland
,
J. C.
, Jr.
,
Shroyer
,
A. L.
,
Chen
,
A. Y.
,
Peterson
,
E.
, and
Grover
,
F. L.
,
2001
, “
Off-Pump Coronary Artery Bypass Grafting Decreases Risk-Adjusted Mortality and Morbidity
,”
Ann. Thorac. Surg.
,
72
(
4
), pp.
1282
1289
.10.1016/S0003-4975(01)03006-5
10.
Costanza
,
A. D.
,
Wood
,
N. A.
,
Passineau
,
M. J.
,
Moraca
,
R. J.
,
Bailey
,
S. H.
,
Yoshizumi
,
T.
, and
Riviere
,
C. N.
,
2014
, “
A Parallel Wire Robot for Epicardial Interventions
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Chicago, IL, Aug. 26–30, pp.
6155
–61
58
.10.1109/EMBC.2014.6945034
11.
Mack
,
M. J.
,
2001
, “
Minimally Invasive and Robotic Surgery
,”
JAMA
,
285
(
5
), pp.
568
–5
72
.10.1001/jama.285.5.568
12.
Beasley
,
R. A.
,
2012
, “
Medical Robots: Current Systems and Research Directions
,”
J. Rob.
,
2012
, pp.
1
14
.10.1155/2012/401613
13.
Breault
,
M. S.
,
Costanza
,
A. D.
,
Wood
,
N. A.
,
Passineau
,
M. J.
, and
Riviere
,
C. N.
,
2015
, “
Toward Hybrid Force/Position Control for the Cerberus Epicardial Robot
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Milan, Italy, Aug. 25–29, pp.
7776
–77
79
.10.1109/EMBC.2015.7320195
14.
Liu
,
C.
,
Moreira
,
P.
,
Zemiti
,
N.
, and
Poignet
,
P.
,
2011
, “
3D Force Control for Robotic-Assisted Beating Heart Surgery Based on Viscoelastic Tissue Model
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Boston, MA, Aug. 30–Sept. 3, pp.
7054
58
.10.1109/IEMBS.2011.6091783
15.
Peters
,
B. S.
,
Armijo
,
P. R.
,
Krause
,
C.
,
Choudhury
,
S. A.
, and
Oleynikov
,
D.
,
2018
, “
Review of Emerging Surgical Robotic Technology
,”
Surgical Endoscopy
,.
32
(
4
), pp.
1636
1655
.10.1007/s00464-018-6079-2
16.
Cheng
,
L.
,
Sharifi
,
M.
, and
Tavakoli
,
M.
,
2018
, “
Towards Robot-Assisted Anchor Deployment in Beating-Heart Mitral Valve Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
3
), p.
e1900
.10.1002/rcs.1900
17.
Liang
,
F.
,
Yu
,
Y.
,
Wang
,
H.
, and
Meng
,
X.
,
2013
, “
Heart Motion Prediction in Robotic-Assisted Beating Heart Surgery: A Nonlinear Fast Adaptive Approach
,”
Int. J. Adv. Rob. Syst.
,
10
(
1
), p.
82
.10.5772/55581
18.
Cheng
,
L.
, and
Tavakoli
,
M.
,
2018
, “
Switched-Impedance Control of Surgical Robots in Teleoperated Beating-Heart Surgery
,”
J. Med. Rob. Res.
,
03
, p.
1841003
.10.1142/S2424905X18410039
19.
Zhang
,
W.
,
Yao
,
G.
,
Yang
,
B.
,
Zheng
,
W.
, and
Liu
,
C.
,
2022
, “
Motion Prediction of Beating Heart Using Spatio-Temporal LSTM
,”
IEEE Signal Process. Lett.
,
29
, pp.
787
791
.10.1109/LSP.2022.3154317
20.
Ladak
,
A.
,
Dixit
,
D.
,
Halbreiner
,
M. S.
,
Passineau
,
M. J.
,
Murali
,
S.
, and
Riviere
,
C. N.
,
2021
, “
Introducer Design Concepts for an Epicardial Parallel Wire Robot
,”
Rob. Surg.: Res. Rev.
,
8
, pp.
21
38
.10.2147/RSRR.S327069
21.
Costanza
,
A. D.
,
Breault
,
M. S.
,
Wood
,
N. A.
,
Passineau
,
M. J.
,
Moraca
,
R. J.
, and
Riviere
,
C. N.
,
2016
, “
Parallel Force/Position Control of an Epicardial Parallel Wire Robot
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
1186
1191
.10.1109/LRA.2016.2530162
22.
Shi
,
H.
,
Xue
,
T.
,
Yang
,
Y.
,
Jiang
,
C.
,
Huang
,
S.
,
Yang
,
Q.
,
Lei
,
D.
,
You
,
Z.
,
Jin
,
T.
,
Wu
,
F.
,
Zhao
,
Q.
, and
Ye
,
X.
,
2020
, “
Microneedle-Mediated Gene Delivery for the Treatment of Ischemic Myocardial Disease
,”
Sci. Adv.
,
6
(
25
), p.
eaaz3621
.10.1126/sciadv.aaz3621
23.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W. W.
, and
Xu
,
Q. S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
66
.10.1186/s10033-018-0267-9
24.
Merlet
,
J. P.
,
2013
, “
Wire-Driven Parallel Robot: Open Issues
,”
ROMANSY 19 – Robot Design, Dynamics and Control
,
Padois
,
V.
,
Bidaud
,
P.
, and
Khatib
,
O.
eds., CISM International Centre for Mechanical Sciences,
Springer
,
Vienna
.
25.
Gosselin
,
C.
, and
Grenier
,
M.
,
2011
, “
On the Determination of the Force Distribution in Overconstrained Cable-Driven Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
3
15
.10.1007/s11012-010-9369-x
26.
Liu
,
P.
, and
Qiu
,
Y.
,
2015
, “
Tension Optimization for a Cable-Driven Parallel Robot With Non-Negligible Cable Mass
,”
Open Autom. Control Syst. J.
,
7
(
1
), pp.
1973
1980
.10.2174/1874444301507011973
27.
Boyette
,
L. C.
, and
Manna
,
B.
,
2021
,
Physiology, Myocardial Oxygen Demand
,
Stat Pearls Publishing
,
Treasure Island, FL
.
28.
Chowienczyk
,
P.
, and
Shah
,
A.
,
2012
, “
Myocardial Wall Stress: From Hypertension to Heart Tension
,”
Hypertension
,
60
(
1
), pp.
10
11
.10.1161/HYPERTENSIONAHA.112.193839
29.
Hoffman
,
J. I.
, and
Buckberg
,
G. D.
,
2014
, “
The Myocardial Oxygen Supply:demand Index Revisited
,”
J. Am. Heart Assoc.
,
3
(
1
), p.
e000285
.10.1161/JAHA.113.000285
30.
Lamaury
,
J.
, and
Gouttefarde
,
M.
,
2012
, “
A Tension Distribution Method With Improved Computational Efficiency
,”
International Conference on Cable-Driven Parallel Robots, Mechanisms and Machine Science
,
Springer
,
Berlin
, Vol.
12
, pp.
71
85
.10.1007/978-3-642-31988-4_5
31.
Abdolshah
,
S.
,
2016
, “
Trajectory Planning and Control of Cable-Driven Parallel Robots
,”
Ph.D. dissertation
,
University of Padua Boston
,
Padua, Italy
.https://www.research.unipd.it/retrieve/e14fb26f-b07f-3de1-e053-1705fe0ac030/abdolshah_saeed_thesis.pdf
32.
Barr
,
R. C.
,
Ramsey
,
M.
, and
Spach
,
M. S.
,
1977
, “
Relating Epicardial to body surface potential Distributors by Means of Transfer Coefficients Based on Geometry Measurements
,”
IEEE Trans. Biomed. Eng.
,
24
(
1
), pp.
1
11
.10.1109/TBME.1977.326201
33.
Erem
,
B.
, and
Brooks
,
D. H.
,
2011
, “
Differential Geometric Approximation of the Gradient and Hessian on a Triangulated Manifold
,”
IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, Chicago, IL, Mar. 30–Apr. 2, pp.
504
507
.10.1109/ISBI.2011.5872455
34.
Wood
,
N. A.
,
Waugh
,
K.
,
Liu
,
T. Y. T.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
,
2012
, “
Space-Time Localization and Registration on the Beating Heart
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vilamoura, Algarve, Portugal, Oct. 7–12, pp.
3792
3797
.10.1109/IROS.2012.6386009
You do not currently have access to this content.