This paper presents an articulated manipulator with multiple instruments for natural orifice endoscopic transluminal endoscopic surgery (NOTES). This robotic system is made up of four major components, namely a multifunctional manipulator, a robot-connecting arm, an articulated drive mechanism, and a surgeon control console. The manipulator, capable of changing instruments in situ at the surgical site, was developed to reduce infection risk, improve surgical workflow, and encourage solo surgery by providing surgeons with all the required instruments. The robot-connecting arm serves as an experimental platform for future bimanual robot configurations. To facilitate stable positioning and optimal orientation of the robot, the articulated drive mechanism was also created. The surgeon control console provides a user-friendly platform to receive system input from surgeons. Benchtop testing showed adequate articulation and tool-tip forces for accomplishment of typical tasks in abdominal surgery. This system leverages the benefits both of cable-wire actuation systems and of direct motor embedding on different components to achieve better tool triangulation, higher instrument grasping force, and improved positioning at the surgical site.

References

1.
Kalloo
,
A. N.
,
Singh
,
V. K.
,
Jagannath
,
S. B.
,
Niiyama
,
H.
,
Hill
,
S. L.
,
Vaughn
,
C. A.
,
Magee
,
C. A.
, and
Kantsevoy
,
S. V.
,
2004
, “
Flexible Transgastric Peritonoscopy: A Novel Approach to Diagnostic and Therapeutic Interventions
,”
Gastrointest. Endosc.
,
60
(
1
), pp.
114
117
.10.1016/S0016-5107(04)01309-4
2.
Rattner
,
D.
, and
Kalloo
,
A.
,
2006
, “
ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery
,”
Surg. Endosc.
,
20
(
2
), pp.
329
333
.10.1007/s00464-005-3006-0
3.
Pearl
,
J. P.
, and
Ponsky
,
J. L.
,
2008
, “
Natural Orifice Translumenal Endoscopic Surgery: A Critical Review
,”
Gastrointest. Surg.
,
12
(
7
), pp.
1293
1300
.10.1007/s11605-007-0424-4
4.
USGI Medical, Inc.
,
2011
, “Transport® Endoscopic Access Device–Retroflex,” accessed October 1,
2011
, http://www.usgimedical.com/eos/components-transport.htm
5.
Brenneman
,
R.
,
Ewers
,
R.
,
Saadat
,
V.
, and
Chen
,
E.
,
2004
, “
Apparatus and Methods for Guiding an Endoscope Via a Rigidizable Wire Guide
,” U.S. Patent No. 20040186350.
6.
Spaun
,
G.
,
Zheng
,
B.
, and
Swanstrom
,
L.
,
2009
, “
A Multitasking Platform for Natural Orifice Translumenal Endoscopic Surgery (NOTES): A Benchtop Comparison of a New Device for Flexible Endoscopic Surgery and a Standard Dual-Channel Endoscope
,”
Surg. Endosc.
,
23
(
12
), pp.
2720
2727
.10.1007/s00464-009-0476-5
7.
DAVE Project—Gastroenterology
,
2011
, “Stomach–Direct Drive Endoscopic System for Endoluminal and NOTES Applications,” accessed Oct. 1, 2011, http://daveproject.org/stomach-direct-drive-endoscopic-system-for-endoluminal-and-notes-applications/ 2007-05-21/
8.
Abbott
,
D. J.
,
Becke
,
C.
,
Rothstein
,
R. I.
, and
Peine
,
W. J.
,
2007
, “
Design of an Endoluminal NOTES Robotic System
,”
Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2007
), San Diego, CA, October 29–November 2, pp.
410
416
.10.1109/IROS.2007.4399536
9.
Phee
,
S. J.
,
Low
,
S. C.
,
Huynh
,
V. A.
,
Kencana
,
A. P.
,
Sun
,
Z. L.
, and
Yang
,
K.
,
2009
, “
Master and Slave Transluminal Endoscopic Robot (MASTER) for Natural Orifice Transluminal Endoscopic Surgery (NOTES)
,”
Proceedings of 2009 IEEE Engineering in Medicine and Biology Conference
(
EMBC 2009
), Minneapolis, MN, September 3–6, pp.
1192
1195
.10.1109/IEMBS.2009.5333413
10.
Lehman
,
A.
,
Dumpert
,
J.
,
Wood
,
N. A.
,
Redden
,
L.
,
Visty
,
A. Q.
,
Farritor
,
S.
,
Varnell
,
B.
, and
Oleynikov
,
D.
,
2009
, “
Natural Orifice Cholecystectomy Using a Miniature Robot
,”
Surg. Endosc.
,
23
(
2
), pp.
260
266
.10.1007/s00464-008-0195-3
11.
Horgan
,
S.
,
Cullen
,
J. P.
,
Talamini
,
M. A.
,
Mintz
,
Y.
,
Ferreres
,
A.
,
Jacobsen
,
G. R.
,
Sandler
,
B.
,
Bosia
,
J.
,
Savides
,
T.
,
Easter
,
D. W.
,
Savu
,
M. K.
,
Ramamoorthy
,
S. L.
,
Whitcomb
,
E.
,
Agarwal
,
S.
,
Lukacz
,
E.
,
Dominguez
,
G.
, and
Ferraina
,
P.
,
2009
, “
Natural Orifice Surgery: Initial Clinical Experience
,”
Surg. Endosc.
,
23
(
7
), pp.
1512
1518
.10.1007/s00464-009-0428-0
12.
Swanström
,
L.
,
Khajanchee
,
Y.
, and
Abbas
,
M.
,
2008
, “
Natural Orifice Transluminal Endoscopic Surgery: The Future of Gastrointestinal Surgery
,”
Perm. J.
,
12
(
2
), pp.
42
47
.
13.
Bardaro
,
S. J.
, and
Swanström
,
L.
,
2006
, “
Development of Advanced Endoscopes for Natural Orifice Transluminal Endoscopic Surgery (NOTES)
,”
Min. Invasive Ther. Allied Technol.
,
15
(
6
), pp.
378
383
.10.1080/13645700601038069
14.
Shaikh
,
S. N.
, and
Thompson
,
C. C.
,
2010
, “
Natural Orifice Translumenal Surgery: Flexible Platform Review
,”
Gastrointest. Surg.
,
2
(
6
), pp.
210
216
.10.4240/wjgs.v2.i6.210
15.
Autorino
,
R.
,
Stein
,
R. J.
,
Lima
,
E.
,
Damiano
,
R.
, Khanna,
R.
,
Haber
,
G. P.
,
White
,
M. A.
, and
Kaouk
,
J. H.
,
2010
, “
Current Status and Future Perspectives in Laparoendoscopic Single-Site and Natural Orifice Transluminal Endoscopic Urological Surgery
,”
Int. J. Urol.
,
17
(
5
), pp.
410
431
.10.1111/j.1442-2042.2010.02497.x
16.
Santos
,
B. F.
, and
Hungness
,
E. S.
,
2011
, “
Natural Orifice Translumenal Endoscopic Surgery: Progress in Humans Since White Paper
,”
World J. Gastroenterol.
,
17
(
13
), pp.
1655
1665
.10.3748/wjg.v17.i13.1655
17.
Miller
,
D. J.
,
Nelson
,
C. A.
, and
Oleynikov
,
D.
,
2009
, “
Shortened OR Time and Decreased Patient Risk Through Use of a Modular Surgical Instrument With Artificial Intelligence
,”
Surg. Endosc.
,
23
(
5
), pp.
1099
1105
.10.1007/s00464-008-0321-2
18.
Miller
,
D. J.
, and
Nelson
,
C. A.
,
2008
, “
Novel Mechanical Actuation of a Modular Laparoscopic Surgical Tool
,”
ASME J. Med. Devices
,
2
(
3
), p.
031002
.10.1115/1.2955974
19.
Friedman
,
D. C. W.
,
Dosher
,
J.
,
Kowalewski
,
T.
, Rosen,
J.
, and
Hannaford
,
B.
,
2007
, “
Automated Tool Handling for the Trauma Pod Surgical Robot
,”
Proceedings of the 2007 International Conference of Robotics and Automation
, Rome, April 10–14, pp.
1936
1941
.10.1109/ROBOT.2007.363605
20.
Reuvekamp
,
S.
,
2009
, “
Design of an Automated Instrument Changing System
,” B.Sc. report, Advanced Technology-Report 016CE2009, Control Laboratory, University of Twente, Enschede, The Netherlands.
21.
Chin
,
W. J.
,
Seow
,
C. M.
, and
Nelson
,
C. A.
,
2011
, “
Multifunctional Articulating Surgical Robot for NOTES
,”
Design of Medical Devices Conference
, ASME Paper No. DMD2011–5259.
22.
Oleynikov
,
D.
,
2009
, private communication.
23.
Faraz
,
A.
, and
Payandeh
,
S.
,
1997
, “
Synthesis and Workspace Study of Endoscopic Extenders With Flexible Stem
,”
ASME J. Mech. Design
,
119
(
3
), pp.
412
414
.10.1115/1.2826363
24.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
(
ICRA'04
), New Orleans, LA, April 26–May 1, pp.
351
357
.10.1109/ROBOT.2004.1307175
25.
Reynaerts
,
D.
,
Peirs
,
J.
, and
Van Brussel
,
H.
, “
Shape Memory Micro-Actuation for a Gastro-Intestinal Intervention System
,”
Sensor Actuat. A-Phys
,
77
(
2
), pp.
157
166
.10.1016/S0924-4247(99)00191-0
26.
Ota
,
T.
,
Degani
,
A.
,
Schwartzman
,
D.
,
Zubiate
,
B.
,
McGarvey
,
J.
,
Choset
,
H.
, and
Zenati
,
M. A.
,
2009
, “
A Highly Articulated Robotic Surgical System for Minimally Invasive Surgery
,”
Ann. Thorac. Surg.
,
87
(
4
), pp.
1253
1256
.10.1016/j.athoracsur.2008.10.026
27.
Rentschler
,
M. E.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Oleynikov
,
D.
,
Farritor
,
S. M.
, and
Iagnemma
,
K.
,
2006
, “
Mobile In Vivo Biopsy Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
4155
4160
.10.1109/ROBOT.2006.1642341
28.
Faraz
,
A.
, and
Payandeh
,
S.
,
2001
, “
Towards Approximate Models of Coulomb Frictional Moments in: (I) Revolute Pin Joints and (II) Spherical-Socket Ball Joints
,”
J. Eng. Math.
,
40
(
3
), pp.
283
296
.10.1023/A:1017545030199
29.
Avallone
,
E. A.
,
Baumeister
III,
T.
, and
Sadegh
,
A. M.
,
2007
,
Marks' Standard Handbook for Mechanical Engineers
, 11th ed.,
McGraw-Hill
,
New York
, pp.
3
23
.
30.
Seow
,
C. M.
,
Chin
,
W. J.
, and
Nelson
,
C. A.
,
2011
, “
Robot Kinematic Design Studies for Natural Orifice Surgery
,”
Proceedings of ASME International Design Engineering Technical Conference
, Washington, DC, USA, August 28–31,
ASME
Paper No. DETC2011-47961. 10.1115/DETC2011-47961
31.
Piccigallo
,
M.
,
Scarfogliero
,
U.
,
Quaglia
,
C.
,
Petroni
,
G.
,
Valdastri
,
P.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2010
, “
Design of a Novel Bimanual Robotic System for Single Port Laparoscopy
,”
IEEE-ASME Trans. Mech.
,
15
(
6
), pp.
871
878
.10.1109/TMECH.2010.2078512
You do not currently have access to this content.