Real-time degradation studies of bioresorbable polymers can take weeks, months, and even years to conduct. For this reason, developing and validating mathematical models that describe and predict degradation can provide a means to accelerate the development of materials and devices for controlled drug release. This study aims to develop and experimentally validate a computer-aided model that simulates the hydrolytic degradation kinetics of bioresorbable polymeric micropatterned membranes for tissue engineering applications. Specifically, the model applies to circumstances that are conducive for the polymer to undergo surface erosion. The developed model provides a simulation tool enabling the prediction and visualization of the dynamic geometry of the degrading membrane. In order to validate the model, micropatterned polymeric membranes were hydrolytically degraded in vitro and the morphological changes were analyzed using optical microscopy. The model is then extended to predict spatiotemporal degradation kinetics of variational micropatterned architectures.

References

1.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2010
, “
Modeling of Spatially Controlled Bio-Molecules in Three-Dimensional Porous Alginate Structures
,”
ASME J. Med. Devices
,
4
(
4
), p.
041003
.10.1115/1.4002612
2.
Khoda
,
A.
,
Ozbolat
,
I.
, and
Koc
,
B.
,
2011
, “
Engineered Tissue Scaffolds With Variational Porous Architecture
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
011001
.10.1115/1.4002933
3.
Mapili
,
G.
,
Lu
,
Y.
,
Chen
,
S.
, and
Roy
,
K. J.
,
2005
, “
Laser-Layered Microfabrication of Spatially Patterned Functionalized Tissue-Engineering Scaffolds
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
75
, pp.
414
424
.10.1002/jbm.b.30325
4.
Fukuda
,
J.
,
Khademhosseini
,
A.
,
Yeo
,
Y.
,
Yang
,
X.
,
Yeh
,
J.
,
Eng
,
G.
,
Blumling
,
J.
,
Wang
,
C. F.
,
Kohane
,
D. S.
, and
Langer
,
R.
,
2006
, “
Micro-Molding of Photocrosslinkable Chitason Hydrogel for Spheroid Microarray and Co-Cultures
,”
Biomaterials
,
27
, pp.
5259
5267
.10.1016/j.biomaterials.2006.05.044
5.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2009
, “
A Poly(D,L-Lactide) Resin for the Preparation of Tissue Engineering Scaffolds by Stereolithography
,”
Biomaterials
,
30
(23–24), pp.
3801
3809
.10.1016/j.biomaterials.2009.03.055
6.
Azevedo
,
H. S.
, and
Reis
,
R. L.
,
2004
, “
Understanding the Enzymatic Degradation of Biodegradable Polymer and Strategies to Control the Degradation Rate
,”
Biodegradable Systems in Tissue Engineering and Regenerative Medicine
,
CRC
,
Boca Raton FL
.
7.
Ozbolat
,
I. T.
,
Marchany
,
M.
,
Bright
,
F. V.
,
Cartwright
,
A. N.
,
Gardella
,
J. A.
,
Hard
,
R.
,
Hicks
,
W. L.
, and
Koc
,
B.
,
2009
, “
Feature Based Bio-Modeling of Micropatterned Structures for Tissue Engineering
,”
Comput.-Aided Des. Appl.
,
6
(
5
), pp.
661
671
.10.3722/cadaps.2009.661-671
8.
Ha
,
C.-S.
, and
Gardella
,
J. A.
,
2005
, “
Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems
,”
Chem. Rev.
,
105
(
11
), pp.
4205
4232
.10.1021/cr040419y
9.
Winzenburg
,
G.
,
Schmidt
,
C.
,
Fuchs
,
S.
, and
Kissel
,
T.
,
2004
, “
Biodegradable Polymers and Their Potential Use in Parenteral Veterinary Drug Delivery Systems
,”
Adv. Drug Del. Rev.
,
56
(
10
), pp.
1453
1466
.10.1016/j.addr.2004.02.008
10.
Acemoglu
,
M.
,
2004
, “
Chemistry of Polymer Biodegradation and Implications on Parenteral Drug Delivery
,”
Int. J. Pharm.
,
277
(
1–2
), pp.
133
139
.10.1016/j.ijpharm.2003.06.002
11.
Lee
,
J.-W.
, and
Gardella
,
J. A.
,
2001
, “
In Vitro Hydrolytic Surface Degradation of Poly(Glycolic Acid): Role of the Surface Segregated Amorphous Region in the Induction Period of Bulk Erosion
,”
Macromolecules
,
34
(
12
), pp.
3928
3937
.10.1021/ma0022351
12.
Eglin
,
D.
, and
Alini
,
M.
,
2008
, “
Degradable Polymeric Materials for Osteosynthesis: Tutorial
,”
Eur. Cells Mater.
,
16
, pp.
80
91
.
13.
Vonburkersroda
,
F.
,
Schedl
,
L.
, and
Gopferich
,
A.
,
2002
, “
Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion
,”
Biomaterials
,
23
(
21
), pp.
4221
4231
.10.1016/S0142-9612(02)00170-9
14.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
Multi-Function Based 3D Heterogeneous Wound Scaffolds for Improved Wound Healing
,”
Comput.-Aided Des. Appl.
,
8
(
1
), pp.
43
57
.10.3722/cadaps.2011.43-57
15.
Tessmar
,
K. J.
, and
Gopferich
,
A. M.
,
2007
, “
Matrices and Scaffold for Protein Delivery in Tissue Engineering
,”
Adv. Drug Del. Rev.
,
59
(
4–5
), pp.
274
291
.10.1016/j.addr.2007.03.020
16.
Davis
,
M. E.
,
Hsieh
,
P. C.
,
Grodzinsky
,
A. J.
, and
Lee
,
R. T.
,
2005
, “
Custom Design of the Cardiac Microenvironment With Biomaterials
,”
Circ. Res.
,
97
(
1
), pp.
8
15
.10.1161/01.RES.0000173376.39447.01
17.
Grizzi
,
J.
,
Garreau
,
H.
,
Li
,
S.
, and
Vert
,
M.
,
1995
, “
Hydraulic Degradation of Devices Based on Poly(DL-Lactic Acid) Size Dependence
,”
Biomaterials
,
16
(
4
), pp.
303
311
.10.1016/0142-9612(95)93258-F
18.
Agrawal
,
C. M.
,
Huang
,
D.
,
Schmitz
,
J. P.
, and
Athanasiou
,
K. A.
,
1997
, “
Elevated Temperature Degradation of a 50:50 Copolymer of PLA-PGA
,”
Tissue Eng.
,
3
(
4
), pp.
345
352
.10.1089/ten.1997.3.345
19.
McKinney
,
J. S.
,
Huang
,
D.
,
Anthanasiou
,
K. A.
, and
Agrawal
,
C. M.
,
1999
, “
Degradation Kinetics of Highly Permeable Biodegradable Scaffolds
,”
25th Annual Meeting of the Society of Biomaterials
,
Providence, RI
, April 28–May 2.
20.
Kang
,
Y.
,
Xu
,
X.
,
Yin
,
G.
,
Chen
,
A.
,
Liao
,
L.
, and
Yao
,
Y.
,
2007
, “
Comparative Study of the In Vitro Degradation of Poly(L-Lactic Acid)/ß-Tricalcium Phosphate Scaffold in Static and Dynamic Simulated Body Fluid
,”
Eur. Polym. J.
,
43
(
5
), pp.
1768
1778
.10.1016/j.eurpolymj.2007.02.043
21.
Agrawal
,
C. M.
,
McKinney
,
J. S.
,
Lanctot
,
D.
, and
Athanasiou
,
K. A.
,
2000
, “
Effects of Fluid Flow on the In Vitro Degradation Kinetics of Biodegradable Scaffolds for Tissue Engineering
,”
Biomaterials
,
21
, pp.
2443
2452
.10.1016/S0142-9612(00)00112-5
22.
Agrawal
,
C. M.
,
McKinney
,
J. S.
,
Lanctot
,
D.
, and
Athanasiou
,
K. A.
,
2000
, “
Effects of Fluid Flow on the In Vitro Degradation Kinetics of Biodegradable Scaffolds for Tissue Engineering
,”
Biomaterials
,
21
(
23
), pp.
2443
2452
.10.1016/S0142-9612(00)00112-5
23.
Wang
,
Y.
,
Pan
,
J.
,
Han
,
X.
,
Sinka
,
C.
, and
Ding
,
L.
,
2008
, “
A Phenomenological Model for the Degradation of Biodegradable Polymers
,”
Biomaterials
,
29
(
23
), pp.
3393
3401
.10.1016/j.biomaterials.2008.04.042
24.
Siepmann
,
J.
, and
Siepmann
,
F.
,
2011
, “Mathematical Modeling of Drug Release From Lipid Dosage Forms,”
International Journal of Pharmaceutics
,
418
(
1
), pp. 42–53.10.1016/j.ijpharm.2011.07.015
25.
Göpferich
,
A.
, and
Langer
,
R.
,
1995
, “
Modeling Monomer Release From Bioerodible Polymers
,”
J. Controlled Release
,
33
(
1
), pp.
55
69
.10.1016/0168-3659(94)00064-2
26.
Göpferich
,
A.
, and
Tessmar
,
J.
,
2002
, “
Polyanhydride Degradation and Erosion
,”
Adv. Drug Del. Rev.
,
54
(
7
), pp.
911
931
.10.1016/S0169-409X(02)00051-0
27.
Von Burkersroda
,
F.
,
Gref
,
R.
, and
Göpferich
,
A.
,
1997
, “
Erosion of Biodegradable Block Copolymers Made of Poly(D-Lactic Acid) and Poly(Ethylene Glycol)
,”
Biomaterials
,
18
(
24
), pp.
1599
1607
.10.1016/S0142-9612(97)00098-7
28.
Brandl
,
F.
,
Kastner
,
F.
,
Gschwind
,
R. M.
,
Blunk
,
T.
,
Teßmar
,
J.
, and
Göpferich
,
A.
,
2010
, “
Hydrogel-Based Drug Delivery Systems: Comparison of Drug Diffusivity and Release Kinetics
,”
J. Controlled Release
,
142
(
2
), pp.
221
228
.10.1016/j.jconrel.2009.10.030
29.
Fischbach
,
C.
,
Tessmar
,
J.
,
Lucke
,
A.
,
Schnell
,
E.
,
Schmeer
,
G.
,
Blunk
,
T.
, and
Göpferich
,
A.
,
2001
, “
Does UV Irradiation Affect Polymer Properties Relevant to Tissue Engineering?
,”
Surf. Sci.
,
491
(
3
), pp.
333
345
.10.1016/S0039-6028(01)01297-3
30.
Brandl
,
F. P.
,
Seitz
,
A. K.
,
Teßmar
,
J. K. V.
,
Blunk
,
T.
, and
Göpferich
,
A. M.
,
2010
, “
Enzymatically Degradable Poly(Ethylene Glycol) Based Hydrogels for Adipose Tissue Engineering
,”
Biomaterials
,
31
(
14
), pp.
3957
3966
.10.1016/j.biomaterials.2010.01.128
31.
Maschke
,
A.
,
Becker
,
C.
,
Eyrich
,
D.
,
Kiermaier
,
J.
,
Blunk
,
T.
, and
Göpferich
,
A.
,
2007
, “
Development of a Spray Congealing Process for the Preparation of Insulin-Loaded Lipid Microparticles and Characterization Thereof
,”
Eur. J. Pharm. Biopharm.
,
65
(
2
), pp.
175
187
.10.1016/j.ejpb.2006.08.008
32.
Siepmann
,
J.
, and
Göpferich
,
A.
,
2001
, “
Mathematical Modeling of Bioerodible, Polymeric Drug Delivery Systems
,”
Adv. Drug Del. Rev.
,
48
(
2–3
), pp.
229
247
.10.1016/S0169-409X(01)00116-8
33.
Göpferich
,
A.
,
1997
, “
Erosion of Composite Polymer Matrices
,”
Biomaterials
,
18
(
5
), pp.
397
403
.10.1016/S0142-9612(96)00151-2
34.
Marchany
,
M.
,
Gardella
,
J. A.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2009
, “
Determination of Spatially Resolved Hydrolytic Degradation Kinetics of a Micropatterned Bioresorbable Polyester Membrane
,”
17th International Conference on Secondary Ion Mass Spectrometry (SIMS XVII
), Toronto, Canada, September 14–18.
35.
Correlo
,
V. M.
,
Pinho
,
E. D.
,
Pashkuleva
,
I.
,
Bhattacharya
,
M.
,
Neves
,
N. M.
, and
Reis
,
R. L.
,
2007
, “
Water Absorption and Degradation Characteristics of Chitosan-Based Polyester and Hydroxyapatite Composites
,”
Macromol. Bioscience
,
7
(
3
), pp.
354
363
.10.1002/mabi.200600233
36.
Siepmann
,
F.
,
Herrmann
,
S.
,
Winter
,
G.
, and
Siepmann
,
J.
,
2008
, “
A Novel Mathematical Model Quantifying Drug Release From Lipid Implants
,”
J. Controlled Release
,
128
(
3
), pp.
233
240
.10.1016/j.jconrel.2008.03.009
37.
Sideridou
,
I.
,
Achilias
,
D. S.
,
Spyroudi
,
C.
, and
Karabela
,
M.
,
2004
, “
Water Sorption Characteristics of Light-Cured Dental Resins and Composites Based on Bis-EMA/PCDMA
,”
Biomaterials
,
25
(
2
), pp.
367
376
.10.1016/S0142-9612(03)00529-5
38.
Sun
,
Y. M.
,
1996
, “
Sorption/Desorption Properties of Water Vapor in Poly(2-Hydroxyethyl Methacrylate): 2. Two-Stage Sorption Models
,”
Polymer
,
37
, pp.
3921
3928
.10.1016/0032-3861(96)00221-2
39.
Polyanin
,
A. D.
,
2001
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
40.
Soranza
,
A.
, and
Epure
,
E.
,
2012
, “
Simply Explicitly Invertible Approximations to 4 Decimals of Error Function and Normal Cumulative Distribution Function
,” eprint: 2012arXiv1201.1320S.
41.
Huebner
,
K. H. H.
,
Dewhirst
,
D. L.
,
Smith
,
D. E.
, and
Byrom
,
T. G.
,
2001
,
Finite Element Method for Engineers
,
J. Wiley and Sons
,
New York
.
42.
Marchany
,
M.
,
Ozbolat
,
I. T.
,
Koc
,
B.
, and
Gardella
,
J. A.
,
2010
, “
Mapping of a Polymer Surface Reaction: Determination of the Spatially Resolved, Hydrolytic Degradation Kinetics of a Micropatterned Bioresorbable Membrane
,”
AVS 57th International Symposium and Exhibition
,
Albuquerque, NM
, October 17–22.
43.
Samanta
,
K.
, and
Koc
,
B.
,
2005
, “
Feature-Based Design and Material Blending for Free-Form Heterogeneous Object Modeling
,”
Comput.-Aided Des.
,
37
(
3
), pp.
287
305
.10.1016/j.cad.2004.03.005
44.
Siparsky
,
G. L.
,
Voorhees
,
K. J.
, and
Schilling
,
K.
,
1997
, “
Water Transport in Polylactic Acid (PLA), Pla/Plycaprolactone Copolymers, and PLA/Polyethylene Glycol Blends
,”
J. Polym. Environ.
,
5
(
3
), pp.
125
136
.10.1007/BF02763656
45.
Ohira
,
Y. A.
,
Ito
,
A.
, and
Ikawa
,
S.
,
1977
, “
Correction of Water Content and Solute Concentration in Blood During Hemoconcentration
,”
J. Appl. Physiol.
,
42
(
5
), pp.
739
743
.
You do not currently have access to this content.