The stent design itself seems to be one of the factors responsible for restenosis. As a remedy, the present work attempts to perform a design optimization of coronary stents from a hemodynamic point of view. For the purpose, we have applied the principles of modern exploration of design space restricting ourselves to two-dimensional considerations. Width, thickness, and spacing of the struts of the stent formed the design variables. The objectives chosen for optimization were the vorticity generated, length of recirculation zone, and the reattachment distance in between the struts. Both semicircular and rectangular cross sections of stents were included. Starting with the range of design variables, sample stent cases were generated using Latin hypercube sampling. Objective functions were calculated for each of these by computing the two-dimensional flow using software FLUENT under the assumption of a steady, Newtonian flow considering a model stent with three struts. This was followed by Kriging to construct a response surface, which gives the relationship between the objectives and the design variables. The procedure gave nondominated fronts, which consist of optimized designs. Stents with minimum vorticity, with minimum recirculation distance, and the ones with maximum reattachment length in between struts were generated. The procedure is capable of producing the optimum set of design variables to achieve the prescribed objectives.

1.
Grewe
,
P. H.
,
Deneke
,
T.
,
Machraoui
,
A.
,
Barmeyer
,
J.
, and
Müller
,
K. M.
, 2000, “
Acute and Chronic Tissue Response to Coronary Stent Implantation: Pathologic Findings in Human Specimen
,”
J. Am. Coll. Cardiol.
0735-1097,
35
, pp.
157
163
.
2.
Lemos
,
P. A.
,
Serruys
,
P. W.
, and
Sousa
,
J. E.
, 2003, “
Drug-Eluting Stents; Cost Versus Clinical Benefit
,”
Circulation
0009-7322,
107
, pp.
3003
3007
.
3.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
, 2005, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
38
, pp.
1574
1581
.
4.
Kastrati
,
A.
,
Mehili
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schuhlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Newmann
,
F.-J.
, and
Schomig
,
A.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
0002-9149,
87
, pp.
34
39
.
5.
Frank
,
A. O.
,
Walsh
,
P. W.
, and
Moore
, Jr.,
J. E.
, 2002, “
Computational Fluid Dynamics and Stent Design
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
614
621
.
6.
Lowe
,
H. C.
,
Oesterle
,
S. N.
, and.
Khachigian
,
L. M.
, 2002, “
Coronary In-Stent Restenosis: Current Status and Future Strategies
,”
J. Am. Coll. Cardiol.
0735-1097,
39
, pp.
183
193
.
7.
Brinda Balakrishnan
,
S. B.
,
Tzafriri
,
A. R.
,
Seifert
,
P.
,
Groothius
,
A.
,
Rogers
,
C.
, and
Edelman
,
E. R.
, 2005, “
Strut Position, Blood Flow and Drug Deposition, Implications for Single and Overlapping Drug-Eluting Stents
,”
Circulation
0009-7322,
111
, pp.
2958
2965
.
8.
Benard
,
N.
,
Perrault
,
R.
, and
Coisne
,
D.
, 2006, “
Computational Approach to Estimating the Effects of Blood Properties on Changes in Intra-Stent Flow
,”
Ann. Biomed. Eng.
0090-6964,
34
(
8
), pp.
1259
1271
.
9.
Seo
,
T.
,
Schachter
,
L. G.
, and
Barakat
,
A. L.
, 2005, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
444
456
.
10.
Stuhne
,
G. R.
, and
Steinman
,
D. A.
, 2004, “
Finite Element Modeling of the Hemodynamics of Stented Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
382
387
.
11.
Nakayama
,
T.
,
Ohta
,
M.
,
Rufenacht
,
D. A.
, and
Takahashi
,
A.
, 2007, “
The Effect of Stenting With Difference Positions on Hemodynamics in a Cerebral Aneurysm
,”
The Ninth International Symposium on Future Medical Engineering Based on Bio-Nanotechnology
,
Tohoku University 21st Century COE Programme
, Jan. 7–9,
Sendai International Center
,
Sendai, Japan
, pp.
106
107
.
12.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient Specific Computational Hemodynamics Models
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
, pp.
2550
2559
.
13.
Whittaker
,
D. R.
, and
Fillinger
,
M. F.
, 2006, “
The Engineering of Endovascular Stent Technology: A Review
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
40
(
2
), pp.
85
94
.
14.
Berry
,
J. L.
,
Moore
,
J. E.
,
Newman
,
V. S.
, and
Routh
,
W. D.
, 1997, “
In Vitro Flow Visualization in Stented Arterial Segments
,”
J. Vasc. Invest.
1353-8012,
3
, pp.
63
68
.
15.
Traub
,
O.
, and
Berk
,
C. B.
, 1998, “
Laminar Shear Stress: Mechanisms by which Endothelial Cells Transduce an Atheroprotective Force
,”
Ann. Allergy Asthma Immunol.
1081-1206,
18
, pp.
677
685
.
16.
Wentzel
,
J. J.
,
Whelan
,
D. M.
,
van der Giessen
,
W. J.
,
van Beusekom
,
H. M. M.
,
Andhyiswara
,
I.
,
Serruys
,
P. W.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2000, “
Coronary Stent Implantation Changes 3-D Vessel Geometry and 3-D Shear Stress Distribution
,”
J. Biomech.
0021-9290,
33
, pp.
1287
1295
.
17.
Wentzel
,
J. J.
,
Krams
,
R.
,
Schuurbiers
,
J. C.
,
Oomen
,
J. A.
,
Kloet
,
J.
,
van Der Giessen
,
W. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
, 2001, “
Relationship Between Neointimal Thickness and Shear Stress After Wall Stent Implantation in Human Coronary Arteries
,”
Circulation
0009-7322,
103
, pp.
1740
1745
.
18.
LaDisa
, Jr.,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
972
980
.
19.
Rajamohan
,
D.
,
Banerjee
,
R. K.
,
Back
,
L. H.
,
Ibrahim
,
A. A.
, and
Jog
,
M. A.
, 2006, “
Developing Pulsatile Flow in a Deployed Coronary Stent
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
347
359
.
20.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
, Jr.,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
386
398
.
21.
Moore
,
J. E.
, and
Berry
,
J. L.
, 2002, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
1
11
.
22.
Duraiswamy
,
N.
,
Jayachandran
,
B.
,
Byrne
,
J.
,
Moore
, Jr.,
J. E.
, and
Schoephoerster
,
R. T.
, 2005, “
Spatial Distribution of Platelet Deposition in Stented Arterial Models Under Physiologic Flow
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1767
1777
.
23.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Dotzer
,
F.
,
Schühlen
,
H.
,
Neumann
,
F.-J.
,
Fleckenstein
,
M.
,
Pfafferott
,
C.
,
Seyfarth
,
M.
, and
Schömig
,
A.
, 2001, “
Intracoronary Stenting and Angiographic Results, Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial
,”
Circulation
0009-7322,
103
, pp.
2816
2821
.
24.
Tesch
,
K.
,
Atherton
,
M. A.
, and
Collins
,
M. W.
, 2002, “
Genetic Algorithm Search for Stent Design Improvements
,”
Proceedings of the Fifth International Conference on Adaptive Computing in Design and Manufacture
, Apr. 16–18,
University of Exeter
,
Devon, UK
, pp.
99
107
.
25.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
26.
Jeong
,
S.
, and
Obayashi
,
S.
, 2006, “
Multi-Objective Optimization Using Kriging Model and Data Mining
,”
KSAS International Journal
,
7
, pp.
1
12
.
27.
Chien
,
S. S.
,
Usami
,
S.
,
Taylor
,
M.
,
Lundenburg
,
J. L.
, and
Gergersem
,
M. I.
, 1966, “
Effects of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
0021-8987,
21
, pp.
81
87
.
28.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
21
(
2
),
239
245
.
29.
Donald
,
R. J.
,
Matthias
,
S.
, and
William
,
J. W.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Function
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
30.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
, pp.
1
84
.
31.
Yamamoto
,
Y.
,
Brown
,
D. L.
,
Ischinger
,
T. A.
,
Arbab-Zadeh
,
A.
, and
Penny
,
W. F.
, 1999, “
Effect of Stent Design on Reduction of Elastic Recoil: A Comparison via Quantitative Intravascular Ultrasound
,”
Catheterization and Cardiovascular Interventions
,
47
(
2
), pp.
251
257
.
You do not currently have access to this content.