Abstract

Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips are not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three fiber Bragg grating sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0–4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.

References

1.
Faria
,
C.
,
Bicho
,
E.
,
Rito
,
M.
,
Louro
,
L.
,
Monteiro
,
S.
, and
Erlangen
,
W.
,
2013
, “
Robotic Implantation of Intracerebral Electrodes for Deep Brain Stimulation
,”
2013 IEEE 3rd Portuguese Meeting in Bioengineering
(
ENBENG
), Braga, Portugal, Feb. 20–23, pp.
1
6
.10.1109/ENBENG.2013.6518439
2.
Lefranc
,
M.
, and
Peltier
,
J.
,
2016
, “
Evaluation of the ROSA™ Spine Robot for Minimally Invasive Surgical Procedures
,”
Expert Rev. Med. Devices
,
13
(
10
), pp.
899
906
.10.1080/17434440.2016.1236680
3.
Maddahi
,
Y.
,
Zareinia
,
K.
,
Sepehri
,
N.
, and
Sutherland
,
G.
,
2016
, “
Surgical Tool Motion During Conventional Freehand and Robot-Assisted Microsurgery Conducted Using Neuroarm
,”
Adv. Rob.
,
30
(
9
), pp.
621
633
.10.1080/01691864.2016.1142394
4.
Kanada
,
Y.
,
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Sugiyama
,
N.
,
Tanaka
,
K.
, and
Hanyu
,
T.
,
2013
, “
Force Feedback Manipulating System for Neurosurgery
,”
Procedia CIRP
,
5
, pp.
133
136
.10.1016/j.procir.2013.01.027
5.
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Hamada
,
J.
,
Hayashi
,
Y.
, and
Nakada
,
M.
,
2013
, “
Force-Detecting Gripper and Force Feedback System for Neurosurgery Applications
,”
Int. J. Comput. Assisted Radiol. Surg.
,
8
(
5
), pp.
819
829
.10.1007/s11548-012-0807-1
6.
Yin
,
X. C.
,
Guo
,
S. X.
,
Xiao
,
N.
,
Tamiya
,
T.
,
Hirata
,
H.
, and
Ishihara
,
H.
,
2016
, “
Safety Operation Consciousness Realization of a MR Fluids-Based Novel Haptic Interface for Teleoperated Catheter Minimally Invasive Neurosurgery
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
1043
1054
.10.1109/TMECH.2015.2489219
7.
Seibold
,
U.
,
Kubler
,
B.
, and
Hirzinger
,
G. (ND.
,
2005
, “
Prototype of Instrument for Minimally Invasive Surgery With 6-Axis Force Sensing Capability
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
496
501
.10.1109/ROBOT.2005.1570167
8.
Kim
,
U.
,
Kim
,
Y. B.
,
Seok
,
D.
,
So
,
J.
, and
Choi
,
H. R.
,
2018
, “
A Surgical Palpation Probe With 6-Axis Force/Torque Sensing Capability for Minimally Invasive Surgery
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2755
2765
.10.1109/TIE.2017.2739681
9.
Kim
,
U.
,
Kim
,
Y. B.
,
So
,
J.
,
Seok
,
D.
, and
Choi
,
H. R.
,
2018
, “
Sensorized Surgical Forceps for Robotic-Assisted Minimally Invasive Surgery
,”
IEEE Trans. Ind. Electron.
,
65
(
12
), pp.
9604
9613
.10.1109/TIE.2018.2821626
10.
Gonenc
,
B.
,
Chae
,
J.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2017
, “
Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated With a Handheld Micromanipulator†
,”
Sensors
,
17
(
10
), p.
2195
.10.3390/s17102195
11.
Marcus
,
H. J.
,
Zareinia
,
K.
,
Gan
,
L. S.
,
Yang
,
F. W.
,
Lama
,
S.
,
Yang
,
G.
, and
Sutherland
,
G. R.
,
2014
, “
Forces Exerted During Microneurosurgery: A Cadaver Study
,”
Int. J. Medical Rob. Comput. Assisted Surg.
,
10
(
2
), pp.
251
256
.10.1002/rcs.1568
12.
Gan
,
L. S.
,
Zareinia
,
K.
,
Lama
,
S.
,
Maddahi
,
Y.
,
Yang
,
F. W.
, and
Sutherland
,
G. R.
,
2015
, “
Quantification of Forces During a Neurosurgical Procedure: A Pilot Study
,”
World Neurosurg.
,
84
(
2
), pp.
537
548
.10.1016/j.wneu.2015.04.001
13.
Zareinia
,
K.
,
Maddahi
,
Y.
,
Gan
,
L. S.
,
Ghasemloonia
,
A.
,
Lama
,
S.
,
Sugiyama
,
T.
,
Yang
,
F. W.
, and
Sutherland
,
G. R.
,
2016
, “
A Force-Sensing Bipolar Forceps to Quantify Tool–Tissue Interaction Forces in Microsurgery
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2365
2377
.10.1109/TMECH.2016.2563384
14.
Maddahi
,
Y.
,
Gan
,
L. S.
,
Zareinia
,
K.
,
Lama
,
S.
,
Sepehri
,
N.
, and
Sutherland
,
G. R.
,
2016
, “
Quantifying Workspace and Forces of Surgical Dissection During Robot-Assisted Neurosurgery
,”
Int. J. Medical Rob. Comput. Assisted Surg.
,
12
(
3
), pp.
528
537
.10.1002/rcs.1679
15.
Rao
,
Y. J.
,
1997
, “
In-Fibre Bragg Grating Sensors
,”
Meas. Sci. Technol.
,
8
(
4
), pp.
355
375
.10.1088/0957-0233/8/4/002
16.
Chen
,
T.
,
Saadatnia
,
Z.
,
Kim
,
J.
,
Looi
,
T.
,
Drake
,
J.
,
Diller
,
E.
, and
Naguib
,
H. E.
,
2021
, “
Novel, Flexible and Ultra-Thin Pressure Feedback Sensor for Miniaturized Intra-Ventricular Neurosurgery Robotic Tools
,”
IEEE Trans. Ind. Electron.
,
68
(
5
), pp.
4415
4425
.10.1109/TIE.2020.2984427
17.
Fagogenis
,
G.
,
Mencattelli
,
M.
,
Machaidze
,
Z.
,
Rosa
,
B.
,
Price
,
K.
,
Wu
,
F.
,
Weixler
,
V.
,
Saeed
,
M.
,
Mayer
,
J. E.
, and
Dupont
,
P. E.
,
2019
, “
Autonomous Robotic Intracardiac Catheter Navigation Using Haptic Vision
,”
Sci. Rob.
,
4
(
29
), p.
eaaw1977
.10.1126/scirobotics.aaw1977
18.
Hamed
,
A.
,
Masouleh
,
M. T.
, and
Kalhor
,
A.
,
2020
, “
Design & Characterization of a Bio-Inspired 3-DOF Tactile/Force Sensor and Implementation on a 3-DOF Decoupled Parallel Mechanism for Human-Robot Interaction Purposes
,”
Mechatronics
,
66
, p.
102325
.10.1016/j.mechatronics.2020.102325
19.
Liu
,
J. S.
,
Zhang
,
J.
,
Li
,
X.
, and
Zheng
,
Z.
,
2011
, “
Study on Multiplexing Ability of Identical Fiber Bragg Gratings in a Single Fiber
,”
Chin. J. Aeronautics
,
24
(
5
), pp.
607
612
.10.1016/S1000-9361(11)60071-X
20.
Kuebler
,
B.
,
Seibold
,
U.
, and
Hirzinger
,
G.
,
2005
, “
Development of Actuated and Sensor Integrated Forceps for Minimally Invasive Robotic Surgery
,”
Int. J. Medical Rob. Comput. Assisted Surg.
,
1
(
3
), pp.
96
107
.10.1002/rcs.33
21.
Lee
,
S.
,
Lee
,
S.
, and
Ahn
,
H.
,
2014
, “
Design and Control of Tele-Matched Surgery Robot
,”
Mechatronics
,
24
(
5
), pp.
395
406
.10.1016/j.mechatronics.2014.02.008
22.
Nathoo
,
N.
,
Çavuşoğlu
,
M. C.
,
Vogelbaum
,
M. A.
, and
Barnett
,
G. H.
,
2005
, “
In Touch With Robotics: Neurosurgery for the Future
,”
Neurosurgery
,
56
(
3
), pp.
421
433
.10.1227/01.NEU.0000153929.68024.CF
23.
V
,
V. S. N. S.
,
Padmanabhan
,
D.
,
Rao
,
P. S. M.
, and
Pandya
,
H. J.
,
2019
, “
Force Sensing Technologies for Catheter Ablation Procedures
,”
Mechatronics
,
64
, p.
102295
.10.1016/j.mechatronics.2019.102295
24.
Pandya
,
S.
,
Motkoski
,
J. W.
,
Serrano-Almeida
,
C.
,
Greer
,
A. D.
,
Latour
,
I.
, and
Sutherland
,
G. R.
,
2009
, “
Advancing Neurosurgery With Image-Guided Robotics
,”
J. Neurosurgery
,
111
(
6
), pp.
1141
1149
.10.3171/2009.2.JNS081334
25.
Peirs
,
J.
,
Clijnen
,
J.
,
Reynaerts
,
D.
,
Brussel
,
H. V.
,
Herijgers
,
P.
,
Corteville
,
B.
, and
Boone
,
S.
,
2004
, “
A Micro Optical Force Sensor for Force Feedback During Minimally Invasive Robotic Surgery
,”
Sens. Actuators A: Phys.
,
115
(
2–3
), pp.
447
455
.10.1016/j.sna.2004.04.057
26.
Rahman
,
N.
,
Deaton
,
N. J.
,
Sheng
,
J.
,
Cheng
,
S. S.
, and
Desai
,
J. P.
,
2019
, “
Modular FBG Bending Sensor for Continuum Neurosurgical Robot
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1424
1430
.10.1109/LRA.2019.2896451
27.
Seung
,
S. M.
,
Kang
,
B.
,
Je
,
H. M.
,
Park
,
J.
,
Kim
,
K.
, and
Park
,
S.
,
2009
, “
Tele-Operation Master-Slave System for Minimal Invasive Brain Surgery
,” 2009 IEEE International Conference on Robotics and Biomimetics (
ROBIO
),
Guilin, China, Dec.19–23, pp.
177
182
.10.1109/ROBIO.2009.5420619
28.
Shademan
,
A.
,
Decker
,
R. S.
,
Opfermann
,
J. D.
,
Leonard
,
S.
,
Krieger
,
A.
, and
Kim
,
P. C.
, ,
2016
, “
Supervised Autonomous Robotic Soft Tissue Surgery
,”
Sci. Translational Med.
,
8
(
337
), pp.
337ra64
337ra64
.10.1126/scitranslmed.aad9398
29.
Tercero
,
C.
,
Ikeda
,
S.
,
Matsushima
,
M.
,
Fukuda
,
T.
,
Negoro
,
M.
, and
Takahashi
,
I.
,
2010
, “
Photoelastic Stress Analysis Error Quantification in Vasculature Models for Robot Feedback Control
,”
IEEE/ASME Trans. Mechatronics
,
15
(
4
), pp.
520
526
.10.1109/TMECH.2010.2041786
30.
Xie
,
H.
,
Liu
,
H. B.
,
Noh
,
Y.
,
Li
,
J. M.
,
Wang
,
S. X.
, and
Althoefer
,
K.
,
2015
, “
A Fiber-Optics-Based Body Contact Sensor for a Flexible Manipulator
,”
IEEE Sens. J.
,
15
(
6
), pp.
3543
3550
.10.1109/JSEN.2015.2392384
31.
Zareinia
,
K.
,
Maddahi
,
Y.
,
Ng
,
C.
,
Sepehri
,
N.
, and
Sutherland
,
G. R.
,
2015
, “
Performance Evaluation of Haptic Hand-Controllers in a Robot-Assisted Surgical System
,”
Int. J. Medical Rob. Comput. Assisted Surg.
,
11
(
4
), pp.
486
501
.10.1002/rcs.1637
32.
Zhang
,
L.
,
Ju
,
F.
,
Cao
,
Y. F.
,
Wang
,
Y. Y.
, and
Chen
,
B.
,
2017
, “
A Tactile Sensor for Measuring Hardness of Soft Tissue With Applications to Minimally Invasive Surgery
,”
Sens. Actuators A: Phys.
,
266
, pp.
197
204
.10.1016/j.sna.2017.09.012
33.
Zhou
,
M.
,
Hao
,
X.
,
Eslami
,
A.
,
Huang
,
K.
,
Cai
,
C.
,
Lohmann
,
C. P.
,
Navab
,
N.
,
Knoll
,
A.
, and
Nasseri
,
M. A.
,
2019
, “
6DOF Needle Pose Estimation for Robot-Assisted Vitreoretinal Surgery
,”
IEEE Access
,
7
, pp.
63113
63122
.10.1109/ACCESS.2019.2912327
You do not currently have access to this content.