Abstract

Recently, robotic assistive leg exoskeletons have gained popularity because an increased number of people crave for powered devices to run faster and longer or carry heavier loads. However, these powered devices have the potential to impair knee ligaments. This work was aimed to develop an instrumented knee joint via rapid prototyping that measures the displacements of the four major knee ligaments—the anterior cruciate ligament (ACL), posterior crucial ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL)—to quantify the strain experienced by these ligaments. The knee model consists of a femur, lateral and medial menisci, and a tibia-fibula, which were printed from three dimensional (3D) imaging scans. Nonstretchable cords served as main fiber bundles of the ligaments with their desired stiffnesses provided by springs. The displacement of each cord was obtained via a rotary encoder mechanism, and the leg flexion angle was acquired via a closed-loop four-bar linkage of a diamond shape. The displacements were corroborated by published data, demonstrating the profiles of the displacement curves agreed with known results. The paper shows the feasibility of developing a subject-specific knee joint via rapid prototyping that is capable of quantifying the ligament strain via rapid prototyping.

References

1.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.10.1016/0021-9290(70)90050-3
2.
Robinson
,
J. R.
,
Bull
,
A. M. J.
, and
Amis
,
A. A.
,
2005
, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
,
38
(
5
), pp.
1067
1074
.10.1016/j.jbiomech.2004.05.034
3.
Butler
,
D. L.
,
Grood
,
E. S.
,
Noyes
,
F. R.
,
Zernicke
,
R. F.
, and
Brackett
,
K.
,
1984
, “
Effects of Structure and Strain Measurement Technique on the Material Properties of Young Human Tendons and Fascia
,”
J. Biomech.
,
17
(
8
), pp.
579
596
.10.1016/0021-9290(84)90090-3
4.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2006
, “
The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an in Vitro Simulated Jump Landing
,”
Am. J. Sports Med.
,
34
(
2
), pp.
269
274
.10.1177/0363546505280906
5.
Arms
,
S.
,
Boyle
,
J.
,
Johnson
,
R.
, and
Pope
,
M.
,
1983
, “
Strain Measurement in the Medial Collateral Ligament of the Human Knee: An Autopsy Study
,”
J. Biomech.
,
16
(
7
), pp.
491
496
.10.1016/0021-9290(83)90063-5
6.
Singerman
,
R.
,
Dean
,
J. C.
,
Pagan
,
H. D.
, and
Goldberg
,
V. M.
,
1996
, “
Decreased Posterior Tibial Slope Increases Strain in the Posterior Cruciate Ligament Following Total Knee Arthroplasty
,”
J. Arthroplasty
,
11
(
1
), pp.
99
103
.10.1016/S0883-5403(96)80167-7
7.
Arms
,
S. W.
,
Pope
,
M. H.
,
Johnson
,
R. J.
,
Fischer
,
R. A.
,
Arvidsson
,
I.
, and
Eriksson
,
E.
,
1984
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Am. J. Sports Med.
,
12
(
1
), pp.
8
18
.10.1177/036354658401200102
8.
Fleming
,
B.
,
Beynnon
,
B.
,
Howe
,
J.
,
McLeod
,
W.
, and
Pope
,
M.
,
1992
, “
Effect of Tension and Placement of a Prosthetic Anterior Cruciate Ligament on the Anteroposterior Laxity of the Knee
,”
J. Orthop. Res.
,
10
(
2
), pp.
177
186
.10.1002/jor.1100100204
9.
Ren
,
L.
,
Song
,
G.
,
Conditt
,
M.
,
Noble
,
P. C.
, and
Li
,
H.
,
2007
, “
Fiber Bragg Grating Displacement Sensor for Movement Measurement of Tendons and Ligaments
,”
Appl. Opt.
,
46
(
28
), pp.
6867
6871
.10.1364/AO.46.006867
10.
Phatak
,
N. S.
,
Sun
,
Q.
,
Kim
,
S.-E.
,
Parker
,
D. L.
,
Kent Sanders
,
R.
,
Veress
,
A. I.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Noninvasive Determination of Ligament Strain With Deformable Image Registration
,”
Ann. Biomed. Eng.
,
35
(
7
), pp.
1175
1187
.10.1007/s10439-007-9287-9
11.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Beynnon
,
B. D.
,
Engstrom
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Johnson
,
R. J.
,
2001
, “
The Effect of Weightbearing and External Loading on Anterior Cruciate Ligament Strain
,”
J. Biomech.
,
34
(
2
), pp.
163
170
.10.1016/S0021-9290(00)00154-8
12.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Peura
,
G. D.
,
Nichols
,
C. E.
, and
Johnson
,
R. J.
,
1998
, “
The Strain Behavior of the Anterior Cruciate Ligament During Bicycling
,”
Am. J. Sports Med.
,
26
(
1
), pp.
109
118
.10.1177/03635465980260010301
13.
Heijne
,
A.
,
Fleming
,
B.
,
Renstrom
,
P.
,
Peura
,
G.
,
Beynnon
,
B.
, and
Werner
,
S.
,
2004
, “
Strain on the Anterior Cruciate Ligament During Closed Kinetic Chain Exercises
,”
Med. Sci. Sports Exercise
,
36
(
9
), pp.
935
941
.10.1249/01.MSS.0000128185.55587.A3
14.
Beynnon
,
B. D.
,
Pope
,
M. H.
,
Wertheimer
,
C. M.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Nichols
,
C. E.
, and
Howe
,
J. G.
,
1992
, “
The Effect of Functional Knee-Braces on Strain on the Anterior Cruciate Ligament In Vivo
,”
J. Bone Jt. Surg. Am.
,
74
(
9
), pp.
1298
1312
.10.2106/00004623-199274090-00003
15.
Good
,
L.
, and
Gillquist
,
J.
,
1993
, “
The Value of Intraoperative Isometry Measurements in Anterior Cruciate Ligament Reconstruction: An In Vivo Correlation Between Substitute Tension and Length Change
,”
Arthroscopy
,
9
(
5
), pp.
525
532
.10.1016/S0749-8063(05)80399-8
16.
Som
,
M. H. M.
,
Nagamune
,
K.
,
Kamiya
,
T.
,
Kawaguchi
,
S.
,
Takayama
,
K.
,
Matsumoto
,
T.
,
Kuroda
,
R.
, and
Kurosaka
,
M.
,
2014
, “
A Development of Force Distribution Measurement System With High Resolution for Total Knee Arthroplasty
,”
J. Adv. Comput. Intell. Intell. Inf.
,
18
(
2
), pp.
213
220
.10.20965/jaciii.2014.p0213
17.
Nusser
,
M.
,
Fehle
,
A.
, and
Senner
,
V.
,
2012
, “
Preliminary Studies for Validation of a Novel Sensor Fiber to Measure Forces in Artificial Knee Ligaments
,”
Procedia Eng.
,
34
, pp.
236
241
.10.1016/j.proeng.2012.04.191
18.
Hattori
,
K.
,
Mori
,
K.
,
Habata
,
T.
,
Takakura
,
Y.
, and
Ikeuchi
,
K.
,
2003
, “
Measurement of the Mechanical Condition of Articular Cartilage With an Ultrasonic Probe: Quantitative Evaluation Using Wavelet Transformation
,”
Clin. Biomech.
,
18
(
6
), pp.
553
557
.10.1016/S0268-0033(03)00048-2
19.
Krishna
,
K. V.
, and
Vidyasagar
,
J. V. S.
, “
Biomechanical Analysis of Anterior Cruciate Ligament Graft Substitutes
,”
Proceedings of the First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India, An International Meet
, New Delhi, India, Feb. 15–18, pp.
SPC3
SPC4
.10.1109/RCEMBS.1995.533061
20.
Ravary
,
B.
,
Pourcelot
,
P.
,
Bortolussi
,
C.
,
Konieczka
,
S.
, and
Crevier-Denoix
,
N.
,
2004
, “
Strain and Force Transducers Used in Human and Veterinary Tendon and Ligament Biomechanical Studies
,”
Clin. Biomech.
,
19
(
5
), pp.
433
447
.10.1016/j.clinbiomech.2004.01.008
21.
Moeinzadeh
,
M. H.
,
Engin
,
A. E.
, and
Akkas
,
N.
,
1983
, “
Two-Dimensional Dynamic Modelling of Human Knee Joint
,”
J. Biomech.
,
16
(
4
), pp.
253
264
.10.1016/0021-9290(83)90133-1
22.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
,
2004
, “
Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL
,”
J. Biomech.
,
37
(
11
), pp.
1723
1731
.10.1016/j.jbiomech.2004.01.030
23.
Guess
,
T. M.
, and
Maletsky
,
L. P.
,
2005
, “
Computational Modelling of a Total Knee Prosthetic Loaded in a Dynamic Knee Simulator
,”
Med. Eng. Phys.
,
27
(
5
), pp.
357
367
.10.1016/j.medengphy.2004.11.003
24.
Xu
,
H.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2015
, “
An Improved Opensim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1217
1224
.10.1080/10255842.2014.889689
25.
Sikidar
,
A.
, and
Kalyanasundaram
,
D.
,
2019
, “
An Open-Source Plugin for Opensim® to Model the Non-Linear Behaviour of Dense Connective Tissues of the Human Knee at Variable Strain Rates
,”
Comput. Biol. Med.
,
110
, pp.
186
195
.10.1016/j.compbiomed.2019.05.021
26.
Akalan
,
N. E.
,
Özkan
,
M.
, and
Temelli
,
Y.
,
2008
, “
Three-Dimensional Knee Model: Constrained by Isometric Ligament Bundles and Experimentally Obtained Tibio-Femoral Contacts
,”
J. Biomech.
,
41
(
4
), pp.
890
896
.10.1016/j.jbiomech.2007.10.021
27.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Jung
,
M.
,
Nam
,
J. H.
,
Son
,
J.
,
Lee
,
Y. H.
,
Kim
,
S. J.
, and
Kim
,
S. H.
,
2017
, “
The Effects of Posterior Cruciate Ligament Deficiency on Posterolateral Corner Structures Under Gait- and Squat-Loading Conditions: A Computational Knee Model
,”
Bone Jt. Res.
,
6
(
1
), pp.
31
42
.10.1302/2046-3758.61.BJR-2016-0184.R1
28.
Shen
,
Z.
,
Sam
,
S.
,
Allison
,
G.
, and
Cui
,
L.
,
2017
, “
A Simulation-Based Study on a Clutch-Spring Mechanism Reducing Human Walking Metabolic Cost
,”
Int. J. Mech. Eng. Rob. Res.
,
6
(
6
), pp.
55
60
.
29.
He
,
J.
,
Li
,
D.
,
Lu
,
B.
,
Wang
,
Z.
, and
Zhang
,
T.
,
2006
, “
Custom Fabrication of a Composite Hemi-Knee Joint Based on Rapid Prototyping
,”
Rapid Prototyping J.
,
12
(
4
), pp.
198
205
.10.1108/13552540610682705
30.
Szojka
,
A.
,
Lalh
,
K.
,
Andrews
,
S. H. J.
,
Jomha
,
N. M.
,
Osswald
,
M.
, and
Adesida
,
A. B.
,
2017
, “
Biomimetic 3D Printed Scaffolds for Meniscus Tissue Engineering
,”
Bioprinting
,
8
, pp.
1
7
.10.1016/j.bprint.2017.08.001
31.
Beckmann
,
J.
,
Steinert
,
A.
,
Zilkens
,
C.
,
Zeh
,
A.
,
Schnurr
,
C.
,
Schmitt-Sody
,
M.
, and
Gebauer
,
M.
,
2016
, “
Partial Replacement of the Knee Joint With Patient-Specific Instruments and Implants (ConforMIS iUni, iDuo)
,”
Orthopade
,
45
(
4
), pp.
322
330
.10.1007/s00132-016-3237-x
32.
Park
,
J. H.
,
Lee
,
Y.
,
Shon
,
O.-J.
,
Shon
,
H. C.
, and
Kim
,
J. W.
,
2016
, “
Surgical Tips of Intramedullary Nailing in Severely Bowed Femurs in Atypical Femur Fractures: Simulation With 3D Printed Model
,”
Injury
,
47
(
6
), pp.
1318
1324
.10.1016/j.injury.2016.02.026
33.
Woo
,
S. L. Y.
,
Abramowitch
,
S. D.
,
Kilger
,
R.
, and
Liang
,
R.
,
2006
, “
Biomechanics of Knee Ligaments: Injury, Healing, and Repair
,”
J. Biomech.
,
39
(
1
), pp.
1
20
.10.1016/j.jbiomech.2004.10.025
34.
Petersen
,
W.
, and
Zantop
,
T.
,
2007
, “
Anatomy of the Anterior Cruciate Ligament With Regard to Its Two Bundles
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
35
47
.10.1097/BLO.0b013e31802b4a59
35.
Race
,
A.
, and
Amis
,
A. A.
,
1994
, “
The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament
,”
J. Biomech.
,
27
(
1
), pp.
13
24
.10.1016/0021-9290(94)90028-0
36.
Liu
,
F.
,
Gadikota
,
H. R.
,
Kozánek
,
M.
,
Hosseini
,
A.
,
Yue
,
B.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2011
, “
In Vivo Length Patterns of the Medial Collateral Ligament During the Stance Phase of Gait
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
19
(
5
), pp.
719
727
.10.1007/s00167-010-1336-5
37.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
,
1996
, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
,
29
(
2
), pp.
151
160
.10.1016/0021-9290(95)00040-2
38.
Fu
,
F. H.
,
Harner
,
C. D.
,
Johnson
,
D. L.
,
Miller
,
M. D.
, and
Woo
,
S. L.-Y.
,
1993
, “
Biomechanics of Knee Ligaments: Basic Concepts and Clinical Application
,”
J. Bone Jt. Surg.
,
75
(
11
), pp.
1716
1727
.10.2106/00004623-199311000-00018
39.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2005
, “
Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces
,”
Knee
,
12
(
6
), pp.
424
434
.10.1016/j.knee.2005.03.004
40.
Edwards
,
R. G.
,
Lafferty
,
J. F.
, and
Lange
,
K. O.
,
1970
, “
Ligament Strain in the Human Knee Joint
,”
J. Basic Eng.
,
92
(
1
), pp.
131
136
.10.1115/1.3424920
41.
Kim
,
S.
,
1998
, “
Three-Dimensional Dynamic Model of the Knee
,”
KSME Int. J.
,
12
(
6
), p.
1041
.10.1007/BF02942578
42.
Park
,
S. E.
,
DeFrate
,
L. E.
,
Suggs
,
J. F.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2005
, “
The Change in Length of the Medial and Lateral Collateral Ligaments During In Vivo Knee Flexion
,”
Knee
,
12
(
5
), pp.
377
382
.10.1016/j.knee.2004.12.011
43.
Lee
,
Y. S.
,
Lee
,
S.-W.
,
Nam
,
S. W.
,
Oh
,
W. S.
,
Sim
,
J. A.
,
Kwak
,
J. H.
, and
Lee
,
B. K.
,
2012
, “
Analysis of Tunnel Widening After Double-Bundle ACL Reconstruction
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
11
), pp.
2243
2250
.10.1007/s00167-011-1874-5
44.
Harner
,
C. D.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Carlin
,
G. J.
,
Smith
,
B. A.
,
Kusayama
,
T.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L.
,
1995
, “
The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study. Ligament Morphology and Biomechanical Evaluation
,”
Am. J. Sports Med.
,
23
(
6
), pp.
736
745
.10.1177/036354659502300617
45.
LaPrade
,
R. F.
,
Engebretsen
,
A. H.
,
Ly
,
T. V.
,
Johansen
,
S.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Medial Part of the Knee
,”
J. Bone Jt. Surg.
,
89
(
9
), pp.
2000
2010
.10.2106/JBJS.F.01176
46.
LaPrade
,
R. F.
,
Ly
,
T. V.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2003
, “
The Posterolateral Attachments of the Knee: A Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon
,”
Am. J. Sports Med.
,
31
(
6
), pp.
854
860
.10.1177/03635465030310062101
You do not currently have access to this content.