Abstract

Implant placement plays a key role in trauma and orthopedics. In this paper, a generic technological concept for implant positioning assistance is outlined. The system utilizes conventional radiographic devices for imaging and tracking and embeds into surgical workflows without the need for complex navigation equipment. It is based on feature extraction from cylindrical hole-projections in X-ray images for determining spatial alignment of implant and anatomy. Basic performance of a prototype system was experimentally verified in terms of tracking accuracy and robustness under varying conditions. In a second step, the system was developed into a set of application modules, each serving a pressing clinical need: Plating of the proximal humerus, cephalic nail and dynamic hip-screw placement, general anatomic plating, distal nail interlocking with adjustment of femoral anteversion and corrective osteotomies. Module prototypes were tested according to their degree of maturity from feasibility assessment in wet-labs to clinical handling tests. Orientation tracking of reference objects yielded an accuracy and precision of 0.1±0.71 deg (mean±standard deviation) with a maximum error of 4.68 deg at unfavorable conditions. This base-performance translated, e.g., into a precision of ±1.2 mm (standard deviation) screw-tip to joint distance at proximal humerus plating, or into a precision of lag screw positioning in the femoral head of ±0.6 mm in craniocaudal and ±1.6 mm in anterioposterior direction. The concept revealed strong potential to improve surgical outcomes in a broad range of orthopedic applications due to its generic and simplistic nature. Comprehensive validation activities must follow for clinical introduction.

References

1.
Buckley
,
R.
,
Moran
,
C.
, and
Apivatthakakul
,
T.
,
2017
, “
AO Principles of Fracture Management
,”
Thieme
.
2.
Baumgaertner
,
M. R.
, and
Solberg
,
B. D.
,
1997
, “
Awareness of Tip-Apex Distance Reduces Failure of Fixation of Trochanteric Fractures of the Hip
,”
J. Bone Jt. Surg. Br.
,
79-B
(
6
), pp.
969
971
.10.1302/0301-620X.79B6.0790969
3.
Fletcher
,
J. W. A.
,
Windolf
,
M.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
,
Buschbaum
,
J.
, and
Varga
,
P.
,
2019
, “
Importance of Locking Plate Positioning in Proximal Humeral Fractures as Predicted by Computer Simulations
,”
J. Orthop Res. Soc.
,
37
(
4
), pp.
957
964
.10.1002/jor.24235
4.
Vetter
,
S. Y.
,
Keil
,
C.
,
von Recum
,
J.
,
Wendl
,
K.
,
Grutzner
,
P. A.
, and
Franke
,
J.
,
2014
, “
Postoperative Malrotation After Closed Reduction and Intramedullary Nailing of the Femur: A Retrospective 5-Year Analysis
,”
Z. Orthop. Unfallchirurg.
,
152
(
5
), pp.
498
503
.10.1055/s-0034-1383011
5.
Barry
,
T. P.
,
1984
, “
Radiation Exposure to an Orthopedic Surgeon
,”
Clin. Orthop. Relat. Res.
, (
182
), pp.
160
164
.https://pubmed.ncbi.nlm.nih.gov/6692610/
6.
Gebhard
,
F.
,
Kinzl
,
L.
, and
Arand
,
M.
,
2000
, “
Computer-Assisted Surgery
,”
Unfallchirurgie
,
103
(
8
), pp.
612
617
.10.1007/s001130050593
7.
McGann
,
W.
,
Peter
,
J.
,
Currey
,
J. M.
,
Buckley
,
J. M.
, and
Liddle
,
K. D.
,
2013
, “
A Simple Goniometer for Use Intraoperatively in Total Knee Arthroplasty
,”
ASME J. Med. Dev.
,
7
(
1
), p.
011010
.10.1115/1.4023289
8.
Feldkamp
,
L. A.
,
Davis
,
L. C.
, and
Kress
,
J. W.
,
1984
, “
Practical Cone-Beam Algorithm
,”
J. Opt. Soc. Am. A
,
1
(
6
), pp.
612
619
.10.1364/JOSAA.1.000612
9.
Windolf
,
M.
,
Schroeder
,
J.
,
Fliri
,
L.
,
Dicht
,
B.
,
Liebergall
,
M.
, and
Richards
,
R. G.
,
2012
, “
Reinforcing the Role of the Conventional C-Arm–A Novel Method for Simplified Distal Interlocking
,”
BMC Musculoskeletal Disorders
,
13
(
1
), p.
8
.10.1186/1471-2474-13-8
10.
Fletcher
,
J. W. A.
,
Windolf
,
M.
,
Grunwald
,
L.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
, and
Varga
,
P.
,
2019
, “
The Influence of Screw Length on Predicted Cut-Out Failures for Proximal Humeral Fracture Fixations Predicted by Finite Element Simulations
,”
Arch. Orthop. Trauma Surg.
,
139
(
8
), pp.
1069
1074
.10.1007/s00402-019-03175-x
11.
Panagiotopoulou
,
V. C.
,
Varga
,
P.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
, and
Giannoudis
,
P. V.
,
2019
, “
Late Screw-Related Complications in Locking Plating of Proximal Humerus Fractures: A Systematic Review
,”
Injury
,
50
(
12
), pp.
2176
2195
.10.1016/j.injury.2019.11.002
12.
Davis
,
T. R.
,
Sher
,
J. L.
,
Horsman
,
A.
,
Simpson
,
M.
,
Porter
,
B. B.
, and
Checketts
,
R. G.
,
1990
, “
Intertrochanteric Femoral Fractures. Mechanical Failure After Internal Fixation
,”
J. Bone Jt. Surg. Br.
,
72-B
(
1
), pp.
26
31
.10.1302/0301-620X.72B1.2298790
13.
Kirousis
,
G.
,
Delis
,
H.
,
Megas
,
P.
,
Lambiris
,
E.
, and
Panayiotakis
,
G.
,
2009
, “
Dosimetry During Intramedullary Nailing of the Tibia
,”
Acta Orthop.
,
80
(
5
), pp.
568
572
.10.3109/17453670903350057
14.
Blattert
,
T. R.
,
Fill
,
U. A.
,
Kunz
,
E.
,
Panzer
,
W.
,
Weckbach
,
A.
, and
Regulla
,
D. F.
,
2004
, “
Skill Dependence of Radiation Exposure for the Orthopaedic Surgeon During Interlocking Nailing of Long-Bone Shaft Fractures: A Clinical Study
,”
Arch. Orthop. Trauma Surg.
,
124
(
10
), pp.
659
664
.10.1007/s00402-004-0743-9
15.
Tseng
,
Y.
,
Chu
,
W.
, and
Chu
,
W. C.
,
2015
, “
Intramedullary Endo-Transilluminating Device for Interlocking Nailing Procedures
,”
ASME J. Med. Dev.
,
9
(
3
), p.
030906
.10.1115/1.4030543
16.
Grunwald
,
L.
,
Schröter
,
S.
,
Windolf
,
M.
,
Gueorguiev
,
B.
,
Richards
,
G.
, and
Buschbaum
,
J.
,
2021
, “
In Vivo Test of a Radiography-Based Navigation System for Control of Derotational Osteotomies
,”
J. Orthop. Res
,
39
(
1
), pp.
130
135
.10.1002/jor.24782
17.
Nolte
,
L. P.
, and
Beutler
,
T.
,
2004
, “
Basic Principles of CAOS
,”
Injury
,
35
(
1
), pp.
6
16
. S10.1016/j.injury.2004.05.005
18.
Krettek
,
C.
,
Gebhard
,
F.
, and
Hufner
,
T.
,
2003
, “
The Current Status of Navigation Systems
,”
Unfallchirurg
,
106
(
11
), pp.
897
898
.10.1007/s00113-003-0695-5
19.
Gebhard
,
F.
,
Kraus
,
M.
,
Schneider
,
E.
,
Arand
,
M.
,
Kinzl
,
L.
,
Hebecker
,
A.
, and
Batz
,
L.
,
2003
, “
Radiation Dosage in Orthopedics—A Comparison of Computer-Assisted Procedures
,”
Unfallchirurgie
,
106
(
6
), pp.
492
497
.10.1007/s00113-003-0606-9
20.
Borner
,
M.
,
1997
, “
Computer-Assisted Surgery. A Critical Evaluation
,”
Unfallchirurgie
,
100
(
8
), pp.
689
691
.10.1007/s001130050177
21.
Hufner
,
T.
,
Gebhard
,
F.
,
Grutzner
,
P. A.
,
Messmer
,
P.
,
Stockle
,
U.
, and
Krettek
,
C.
,
2004
, “
Which Navigation When?
,”
Injury
,
35
(
1
), pp.
30
34
.10.1016/j.injury.2004.05.008
22.
Herzog
,
J.
,
Wendlandt
,
R.
,
Hillbricht
,
S.
,
Burgkart
,
R.
, and
Schulz
,
A. P.
,
2019
, “
Optimising the Tip-Apex-Distance in Trochanteric Femoral Fracture Fixation Using the ADAPT-Navigated Technique, a Longitudinal Matched Cohort Study
,”
Injury
,
50
(
3
), pp.
744
751
.10.1016/j.injury.2019.02.010
23.
Takai
,
H.
,
Murayama
,
M.
,
Kii
,
S.
,
Mito
,
D.
,
Hayai
,
C.
,
Motohashi
,
S.
, and
Takahashi
,
T.
,
2018
, “
Accuracy Analysis of Computer-Assisted Surgery for Femoral Trochanteric Fracture Using a Fluoroscopic Navigation System: Stryker ADAPT((R)) System
,”
Injury
,
49
(
6
), pp.
1149
1154
.10.1016/j.injury.2018.03.014
24.
Regling
,
M.
,
Blau
,
A.
,
Probe
,
R. A.
,
Maxey
,
J. W.
, and
Solberg
,
B. D.
,
2014
, “
Improved Lag Screw Positioning in the Treatment of Proximal Femur Fractures Using a Novel Computer Assisted Surgery Method: A Cadaveric Study
,”
BMC Musculoskeletal Disorders
,
15
(
1
), p.
189
.10.1186/1471-2474-15-189
25.
Court-Brown
,
C. M.
, and
Caesar
,
B.
,
2006
, “
Epidemiology of Adult Fractures: A Review
,”
Injury
,
37
(
8
), pp.
691
697
.10.1016/j.injury.2006.04.130
26.
Mereddy
,
P.
,
Kamath
,
S.
,
Ramakrishnan
,
M.
,
Malik
,
H.
, and
Donnachie
,
N.
,
2009
, “
The AO/ASIF Proximal Femoral Nail Antirotation (PFNA): A New Design for the Treatment of Unstable Proximal Femoral Fractures
,”
Injury
,
40
(
4
), pp.
428
432
.10.1016/j.injury.2008.10.014
27.
Madan
,
S.
, and
Blakeway
,
C.
,
2002
, “
Radiation Exposure to Surgeon and Patient in Intramedullary Nailing of the Lower Limb
,”
Injury
,
33
(
8
), pp.
723
727
.10.1016/S0020-1383(02)00042-6
28.
Singer
,
G.
,
2005
, “
Occupational Radiation Exposure to the Surgeon
,”
J. Am. Acad. Orthop. Surg.
,
13
(
1
), pp.
69
76
.10.5435/00124635-200501000-00009
29.
Hafez
,
M. A.
,
Smith
,
R. M.
,
Matthews
,
S. J.
,
Kalap
,
G.
, and
Sherman
,
K. P.
,
2005
, “
Radiation Exposure to the Hands of Orthopaedic Surgeons: Are We Underestimating the Risk?
,”
Arch. Orthop. Trauma Surg.
,
125
(
5
), pp.
330
335
.10.1007/s00402-005-0807-5
30.
Johnson
,
H. A.
,
Miller
,
S.
,
Cervantes
,
T. M.
,
Teo
,
T. J.
,
Metha
,
N.
, and
Slocum
,
A. H.
,
2019
, “
A Lead Garment Structural System to Reduce Musculoskeletal Stress During Fluoroscopy
,”
ASME J. Med. Dev.
,
13
(
4
), p.
045001
.10.1115/1.4042703
You do not currently have access to this content.