Abstract

Separation of microparticles and cells serves a critical step in many applications such as in biological analyses, food production, chemical processing, and medical diagnostics. Sorting on the microscale exhibits certain advantages in comparison with that on the macroscale as it requires minuscule sample or reagents volume and thus reduced analysis cycle time, smaller size of devices, and lower fabrication costs. Progresses have been made over time to improve the efficiency of these microscale particle manipulation techniques. Many different techniques have been used to attain accurate particle sorting and separation in a continuous manner on the microscale level, which can be categorized as either passive or active methods. Passive techniques achieve accurate manipulation of particles through their interaction with surrounding flow by carefully designed channel structures, without using external fields. As an alternative, active techniques utilize external fields (e.g., acoustic, electronic, optical, and magnetic field, etc.) to realize desired pattern of motion for particles with specific properties. Among numerous active methods for microfluidic particle sorting, the magnetic field has been widely used in biomedical and chemical applications to achieve mixing, focusing, and separating of reagents and bioparticles. This paper aims to provide a thorough review on the classic and most up-to-date magnetic sorting and separation techniques to manipulate microparticles including the discussions on the basic concept, working principle, experimental details, and device performance.

References

1.
Kastrup
,
C. J.
,
Boedicker
,
J. Q.
,
Pomerantsev
,
A. P.
,
Moayeri
,
M.
,
Bian
,
Y.
,
Pompano
,
R. R.
,
Kline
,
T. R.
,
Sylvestre
,
P.
,
Shen
,
F.
,
Leppla
,
S. H.
,
Tang
,
W.-J.
, and
Ismagilov
,
R. F.
,
2008
, “
Spatial Localization of Bacteria Controls Coagulation of Human Blood by 'Quorum Acting
,”
Nat. Chem. Biol.
,
4
(
12
), pp.
742
750
.10.1038/nchembio.124
2.
Volpatti
,
L. R.
, and
Yetisen
,
A. K.
,
2014
, “
Commercialization of Microfluidic Devices
,”
Trends Biotechnol.
,
32
(
7
), pp.
347
350
.10.1016/j.tibtech.2014.04.010
3.
Pandey
,
C. M.
,
Augustine
,
S.
,
Kumar
,
S.
,
Kumar
,
S.
,
Nara
,
S.
,
Srivastava
,
S.
, and
Malhotra
,
B. D.
,
2018
, “
Microfluidics Based Point-of-Care Diagnostics
,”
Biotechnol. J.
,
13
(
1
), p.
1700047
.10.1002/biot.201700047
4.
Lee
,
H.
,
Sun
,
E.
,
Ham
,
D.
, and
Weissleder
,
R.
,
2008
, “
Chip-NMR Biosensor for Detection and Molecular Analysis of Cells
,”
Nat. Med.
,
14
(
8
), pp.
869
874
.10.1038/nm.1711
5.
Liu
,
W.
,
Kim
,
H. J.
,
Lucchetta
,
E. M.
,
Du
,
W.
, and
Ismagilov
,
R. F.
,
2009
, “
Isolation, Incubation, and Parallel Functional Testing and Identification by Fish of Rare Microbial Single-Copy Cells From Multi-Species Mixtures Using the Combination of Chemistrode and Stochastic Confinement
,”
Lab a Chip
,
9
(
15
), pp.
2153
2162
.10.1039/b904958d
6.
Pennathur
,
S.
,
Meinhart
,
C. D.
, and
Soh
,
H.
,
2008
, “
How to Exploit the Features of Microfluidics Technology
,”
Lab Chip
,
8
(
1
), pp.
20
22
.10.1039/b717986n
7.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
8.
Jung
,
W.
,
Han
,
J.
,
Choi
,
J.-W.
, and
Ahn
,
C. H.
,
2015
, “
Point-of-Care Testing (POCT) Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies
,”
Microelectron. Eng.
,
132
, pp.
46
57
.10.1016/j.mee.2014.09.024
9.
Gaudin
,
V.
,
2017
, “
Advances in Biosensor Development for the Screening of Antibiotic Residues in Food Products of Animal Origin—A Comprehensive Review
,”
Biosens. Bioelectron.
,
90
, pp.
363
377
.10.1016/j.bios.2016.12.005
10.
Rahmanian
,
N.
,
Bozorgmehr
,
M.
,
Torabi
,
M.
,
Akbari
,
A.
, and
Zarnani
,
A.-H.
,
2017
, “
Cell Separation: Potentials and Pitfalls
,”
Prep. Biochem. Biotechnol.
,
47
(
1
), pp.
38
51
.10.1080/10826068.2016.1163579
11.
Pamme
,
N.
,
2007
, “
Continuous Flow Separations in Microfluidic Devices
,”
Lab Chip
,
7
(
12
), pp.
1644
1659
.10.1039/b712784g
12.
Huang
,
L. R.
,
Cox
,
E. C.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
,
2004
, “
Continuous Particle Separation Through Deterministic Lateral Displacement
,”
Science
,
304
(
5673
), pp.
987
990
.10.1126/science.1094567
13.
Karimi
,
A.
,
Yazdi
,
S.
, and
Ardekani
,
A. M.
,
2013
, “
Hydrodynamic Mechanisms of Cell and Particle Trapping in Microfluidics
,”
Biomicrofluidics
,
7
(
2
), p.
021501
.10.1063/1.4799787
14.
Carlo
,
D. D.
,
2009
, “
Inertial Microfluidics
,”
Lab Chip
,
9
, p.
3038
.10.1039/b912547g
15.
Bhagat
,
A. A. S.
,
Kuntaegowdanahalli
,
S. S.
, and
Papautsky
,
I.
,
2009
, “
Inertial Microfluidics for Continuous Particle Filtration and Extraction
,”
Microfluid. Nanofluid.
,
7
(
2
), pp.
217
226
.10.1007/s10404-008-0377-2
16.
Nouri
,
D.
,
Zabihi-Hesari
,
A.
, and
Passandideh-Fard
,
M.
,
2017
, “
Rapid Mixing in Micromixers Using Magnetic Field
,”
Sens. Actuators A
,
255
, pp.
79
86
.10.1016/j.sna.2017.01.005
17.
Lu
,
L.-H.
,
Ryu
,
K. S.
, and
Liu
,
C.
,
2002
, “
A Magnetic Microstirrer and Array for Microfluidic Mixing
,”
J. Microelectromech. Syst.
,
11
(
5
), pp.
462
469
.10.1109/JMEMS.2002.802899
18.
Moffitt
,
J. R.
,
Chemla
,
Y. R.
,
Smith
,
S. B.
, and
Bustamante
,
C.
,
2008
, “
Recent Advances in Optical Tweezers
,”
Annu. Rev. Biochem.
,
77
(
1
), pp.
205
228
.10.1146/annurev.biochem.77.043007.090225
19.
Kovac
,
J. R.
, and
Voldman
,
J.
,
2007
, “
Intuitive, Image-Based Cell Sorting Using Optofluidic Cell Sorting
,”
Anal. Chem.
,
79
(
24
), pp.
9321
9330
.10.1021/ac071366y
20.
Lee
,
Y.-K.
,
Deval
,
J.
,
Tabeling
,
P.
, and
Ho
,
C.-M.
,
2001
, “
Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows
,” Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (
Cat. No. 01CH37090
), Interlaken, Switzerland, Jan. 25, pp.
483
486
.10.1109/MEMSYS.2001.906584
21.
Yau
,
H. T.
,
Chen
,
C. L.
, and
Cho
,
C. C.
,
2007
, “
Microfluidic Parallel Form Mixer Utilizing Chaotic Electric Field
,”
Key Eng. Mater.
,
364–366
, pp.
449
453
.10.4028/www.scientific.net/KEM.364-366.449
22.
Tan
,
M. K.
,
Friend
,
J. R.
, and
Yeo
,
L. Y.
,
2007
, “
Microparticle Collection and Concentration Via a Miniature Surface Acoustic Wave Device
,”
Lab Chip
,
7
(
5
), p.
618
.10.1039/b618044b
23.
Yeo
,
L. Y.
, and
Friend
,
J. R.
,
2009
, “
Ultrafast Microfluidics Using Surface Acoustic Waves
,”
Biomicrofluidics
,
3
(
1
), p.
012002
.10.1063/1.3056040
24.
Friend
,
J.
, and
Yeo
,
L. Y.
,
2011
, “
Microscale Acoustofluidics: Microfluidics Driven Via Acoustics and Ultrasonics
,”
Rev. Mod. Phys.
,
83
(
2
), pp.
647
704
.10.1103/RevModPhys.83.647
25.
Zhou
,
R.
, and
Wang
,
C.
,
2015
, “
Acoustic Bubble Enhanced Pinched Flow Fractionation for Microparticle Separation
,”
J. Micromech. Microeng.
,
25
(
8
), p.
084005
.10.1088/0960-1317/25/8/084005
26.
Erb
,
R. M.
, and
Yellen
,
B. B.
,
2009
, “
Magnetic Manipulation of Colloidal Particles
,”
Nanoscale Magnetic Materials and Applications
, J. Liu, E. Fullerton, O. Gutfleisch, and D. Sellmyer, eds., Springer, Boston, MA, pp.
563
590
.10.1007/978-0-387-85600-1_19
27.
Zhu
,
T.
,
Marrero
,
F.
, and
Mao
,
L.
,
2010
, “
Continuous Separation of Non-Magnetic Particles Inside Ferrofluids
,”
Microfluid. Nanofluid.
,
9
(
4–5
), pp.
1003
1009
.10.1007/s10404-010-0616-1
28.
Bhagat
,
A. A. S.
,
Bow
,
H.
,
Hou
,
H. W.
,
Tan
,
S. J.
,
Han
,
J.
, and
Lim
,
C. T.
,
2010
, “
Microfluidics for Cell Separation
,”
Med. Biol. Eng. Comput.
,
48
(
10
), pp.
999
1014
.10.1007/s11517-010-0611-4
29.
Sajeesh
,
P.
, and
Sen
,
A. K.
,
2014
, “
Particle Separation and Sorting in Microfluidic Devices: A Review
,”
Microfluid. Nanofluid.
,
17
(
1
), pp.
1
52
.10.1007/s10404-013-1291-9
30.
Lin
,
Y.
,
Gao
,
Y.
,
Wu
,
M.
,
Zhou
,
R.
,
Chung
,
D.
,
Caraveo
,
G.
, and
Xu
,
J.
,
2019
, “
Acoustofluidic Stick-and-Play Micropump Built on Foil for Single-Cell Trapping
,”
Lab Chip
,
19
(
18
), pp.
3045
3053
.10.1039/C9LC00484J
31.
Alshareef
,
M.
,
Metrakos
,
N.
,
Perez
,
E. J.
,
Azer
,
F.
,
Yang
,
F.
,
Yang
,
X.
, and
Wang
,
G.
,
2013
, “
Separation of Tumor Cells With Dielectrophoresis-Based Microfluidic Chip
,”
Biomicrofluidics
,
7
(
1
), p.
011803
.10.1063/1.4774312
32.
Link
,
D. R.
,
Grasland-Mongrain
,
E.
,
Duri
,
A.
,
Sarrazin
,
F.
,
Cheng
,
Z.
,
Cristobal
,
G.
,
Marquez
,
M.
, and
Weitz
,
D. A.
,
2006
, “
Electric Control of Droplets in Microfluidic Devices
,”
Angew. Chem.
,
118
(
16
), pp.
2618
2622
.10.1002/ange.200503540
33.
Wu
,
Y.-C.
,
Wu
,
T.-H.
,
Clemens
,
D. L.
,
Lee
,
B.-Y.
,
Wen
,
X.
,
Horwitz
,
M. A.
,
Teitell
,
M. A.
, and
Chiou
,
P.-Y.
,
2015
, “
Massively Parallel Delivery of Large Cargo Into Mammalian Cells With Light Pulses
,”
Nat. Methods
,
12
(
5
), pp.
439
444
.10.1038/nmeth.3357
34.
Pamme
,
N.
, and
Wilhelm
,
C.
,
2006
, “
Continuous Sorting of Magnetic Cells Via on-Chip Free-Flow Magnetophoresis
,”
Lab Chip
,
6
(
8
), p.
974
.10.1039/b604542a
35.
Gijs
,
M. A. M.
,
Lacharme
,
F.
, and
Lehmann
,
U.
,
2010
, “
Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis
,”
Chem. Rev.
,
110
(
3
), pp.
1518
1563
.10.1021/cr9001929
36.
Nguyen
,
N.-T.
,
2012
, “
Micro-Magnetofluidics: Interactions Between Magnetism and Fluid Flow on the Microscale
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
1
16
.10.1007/s10404-011-0903-5
37.
Pamme
,
N.
,
2006
, “
Magnetism and Microfluidics
,”
Lab Chip
,
6
(
1
), pp.
24
38
.10.1039/B513005K
38.
Zborowski
,
M.
, and
Chalmers
,
J. J.
,
2015
, “
Magnetophoresis: Fundamentals and Applications
,”
Wiley Encyclopedia of Electrical and Electronics Engineering
, pp.
1
23
.10.1002/047134608X.W8236
39.
Furlani
,
E. P.
,
2007
, “
Magnetophoretic Separation of Blood Cells at the Microscale
,”
J. Phys. D
,
40
(
5
), pp.
1313
1319
.10.1088/0022-3727/40/5/001
40.
Wu
,
J.
,
Yan
,
Q.
,
Xuan
,
S.
, and
Gong
,
X.
,
2017
, “
Size-Selective Separation of Magnetic Nanospheres in a Microfluidic Channel
,” Microfluid. Nanofluid,
21
, Article No.
47
.10.1007/s10404-017-1886-7
41.
He
,
Y.
,
Luo
,
L.
, and
Huang
,
S.
,
2019
, “
Magnetic Manipulation on the Unlabeled Nonmagnetic Particles
,”
Int. J. Mod. Phys. B
,
33
(
7
), p.
1950047
.10.1142/S0217979219500474
42.
Guo
,
J.
,
Wang
,
Y.
,
Xue
,
Z.
,
Xia
,
H.
,
Yang
,
N.
, and
Zhang
,
R.
,
2018
, “
Numerical Analysis of Capture and Isolation of Magnetic Nanoparticles in Microfluidic System
,”
Mod. Phys. Lett. B
,
32
(
34n36
), p.
1840075
.10.1142/S0217984918400754
43.
Shamloo
,
A.
,
Ahmad
,
S.
, and
Momeni
,
M.
,
2018
, “
Design and Parameter Study of Integrated Microfluidic Platform for CTC Isolation and Enquiry; a Numerical Approach
,”
Microfluid. Nanofluid.
,
8
(
2
), p.
56
.10.3390/bios8020056
44.
Samanta
,
A.
,
Modak
,
N.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2016
, “
Operating Regimes of a Magnetic Split-Flow Thin (SPLITT) Fractionation Microfluidic Device for Immunomagnetic Separation
,” Microfluid. Nanofluid.,
20
, Article No.
87
.10.1007/s10404-016-1751-0
45.
Zhang
,
Y.
,
Barber
,
R.
, and
Emerson
,
D.
,
2005
, “
Particle Separation in Microfluidic Devices 3/4 SPLITT Fractionation and Microfluidics
,”
Bentham Anal. Chem.
,
1
(
3
), pp.
345
354
.10.2174/157341105774573983
46.
Samanta
,
A.
,
Ganguly
,
R.
,
Datta
,
A.
, and
Modak
,
N.
,
2017
, “
Separation of Magnetic Beads in a Hybrid Continuous Flow Microfluidic Device
,”
J. Magn. Magn. Mater.
,
427
, pp.
300
305
.10.1016/j.jmmm.2016.10.143
47.
Amos
,
P. J.
,
Bozkulak
,
E. C.
, and
Qyang
,
Y.
,
2012
, “
Methods of Cell Purification: A Critical Juncture for Laboratory Research and Translational Science
,”
Cell Tissues Organs
,
195
(
1–2
), pp.
26
40
.10.1159/000331390
48.
Furdui
,
V. I.
, and
Harrison
,
D. J.
,
2004
, “
Immunomagnetic T Cell Capture From Blood for PCR Analysis Using Microfluidic Systems
,”
Lab Chip
,
4
(
6
), p.
614
.10.1039/b409366f
49.
Munaz
,
A.
,
Shiddiky
,
M. J. A.
, and
Nguyen
,
N.-T.
,
2018
, “
Recent Advances and Current Challenges in Magnetophoresis Based Micro Magnetofluidics
,”
Biomicrofluidics
,
12
(
3
), p.
031501
.10.1063/1.5035388
50.
Hejazian
,
M.
, and
Nguyen
,
N.-T.
,
2016
, “
Magnetofluidic Concentration and Separation of Non-Magnetic Particles Using Two Magnet Arrays
,”
Biomicrofluidics
,
10
(
4
), p.
044103
.10.1063/1.4955421
51.
Murray
,
C.
,
Pao
,
E.
,
Tseng
,
P.
,
Aftab
,
S.
,
Kulkarni
,
R.
,
Rettig
,
M.
, and
Carlo
,
D. D.
,
2016
, “
Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting
,”
Small
,
12
(
14
), pp.
1891
1899
.10.1002/smll.201502120
52.
Hejazian
,
M.
, and
Nguyen
,
N.-T.
,
2015
, “
Negative Magnetophoresis in Diluted Ferrofluid Flow
,”
Lab Chip
,
15
(
14
), pp.
2998
3005
.10.1039/C5LC00427F
53.
Zhou
,
R.
, and
Wang
,
C.
,
2016
, “
Multiphase Ferrofluid Flows for Micro-Particle Focusing and Separation
,”
Biomicrofluidics
,
10
(
3
), p.
034101
.10.1063/1.4948656
54.
Rosensweig
,
R. E.
,
1966
, “
Fluidmagnetic Buoyancy
,”
AIAA J.
,
4
(
10
), pp.
1751
1758
.10.2514/3.3773
55.
Neuringer
,
J. L.
, and
Rosensweig
,
R. E.
,
1964
, “
Ferrohydrodynamics
,”
Phys. Fluids
,
7
(
12
), p.
1927
.10.1063/1.1711103
56.
Gossett
,
D. R.
,
Weaver
,
W. M.
,
Mach
,
A. J.
,
Hur
,
S. C.
,
Tse
,
H. T. K.
,
Lee
,
W.
,
Amini
,
H.
, and
Carlo
,
D. D.
,
2010
, “
Label-Free Cell Separation and Sorting in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
397
(
8
), pp.
3249
3267
.10.1007/s00216-010-3721-9
57.
Nagrath
,
S.
,
Sequist
,
L. V.
,
Maheswaran
,
S.
,
Bell
,
D. W.
,
Irimia
,
D.
,
Ulkus
,
L.
,
Smith
,
M. R.
,
Kwak
,
E. L.
,
Digumarthy
,
S.
,
Muzikansky
,
A.
,
Ryan
,
P.
,
Balis
,
U. J.
,
Tompkins
,
R. G.
,
Haber
,
D. A.
, and
Toner
,
M.
,
2007
, “
Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology
,”
Nature
,
450
(
7173
), pp.
1235
1239
.10.1038/nature06385
58.
Ashby
,
M. F.
,
Ferreira
,
P. J.
, and
Schodek
,
D. L.
,
2009
,
Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects
, Vol.
47
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
59.
Heldman
,
D. R.
, and
Moraru
,
C. I.
,
2010
,
Encyclopedia of Agricultural, Food, and Biological Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
60.
Basch
,
R. S.
,
Berman
,
J. W.
, and
Lakow
,
E.
,
1983
, “
Cell Separation Using Positive Immunoselective Techniques
,”
J. Immunol. Methods
,
56
(
3
), pp.
269
280
.10.1016/S0022-1759(83)80016-7
61.
Olsvik
,
O.
,
Popovic
,
T.
,
Skjerve
,
E.
,
Cudjoe
,
K. S.
,
Hornes
,
E.
,
Ugelstad
,
J.
, and
Uhlén
,
M.
,
1994
, “
Magnetic Separation Techniques in Diagnostic Microbiology
,”
Clin. Microbiol. Rev.
,
7
(
1
), pp.
43
54
.10.1128/CMR.7.1.43
62.
Zhu
,
T.
,
Cheng
,
R.
,
Liu
,
Y.
,
He
,
J.
, and
Mao
,
L.
,
2014
, “
Combining Positive and Negative Magnetophoreses to Separate Particles of Different Magnetic Properties
,”
Microfluid. Nanofluid.
,
17
(
6
), pp.
973
982
.10.1007/s10404-014-1396-9
63.
McCloskey
,
K. E.
,
Chalmers
,
J. J.
, and
Zborowski
,
M.
,
2003
, “
Magnetic Cell Separation: Characterization of Magnetophoretic Mobility
,”
Anal. Chem.
,
75
(
24
), pp.
6868
6874
.10.1021/ac034315j
64.
Park
,
T. S.
, and
Yoon
,
J.-Y.
,
2015
, “
Smartphone Detection of Escherichia Coli From Field Water Samples on Paper Microfluidics
,”
Agric. Biosyst. Eng.
,
15
(
3
), pp.
1902
1907
.10.1109/JSEN.2014.2367039
65.
Tomlinson
,
M. J.
,
Tomlinson
,
S.
,
Yang
,
X. B.
, and
Kirkham
,
J.
,
2013
, “
Cell Separation: Terminology and Practical Considerations
,”
J. Tissue Eng.
,
4
, p.
204173141247269
.10.1177/2041731412472690
66.
Zablotskii
,
V.
,
Lunov
,
O.
,
Dejneka
,
A.
,
Jastrabík
,
L.
,
Polyakova
,
T.
,
Syrovets
,
T.
, and
Simmet
,
T.
,
2011
, “
Nanomechanics of Magnetically Driven Cellular Endocytosis
,”
Appl. Phys. Lett.
,
99
(
18
), p.
183701
.10.1063/1.3656020
67.
Furlani
,
E. P.
, and
Ng
,
K. C.
,
2006
, “
Analytical Model of Magnetic Nanoparticle Transport and Capture in the Microvasculature
,”
Phys. Rev. E
,
73
, Article No. 061919.10.1103/physreve.73.061919
68.
Furlani
,
E. P.
,
2010
, “
Magnetic Biotransport: Analysis and Applications
,”
Mater.
,
3
(
4
), pp.
2412
2446
.10.3390/ma3042412
69.
Sinha
,
A.
,
Ganguly
,
R.
,
De
,
A. K.
, and
Puri
,
I. K.
,
2007
, “
Single Magnetic Particle Dynamics in a Microchannel
,”
Phys. Fluids
,
19
(
11
), p.
117102
.10.1063/1.2780191
70.
Wirix-Speetjens
,
R.
,
Fyen
,
W.
,
Boeck
,
J. D.
, and
Borghs
,
G.
,
2006
, “
Single Magnetic Particle Detection: Experimental Verification of Simulated Behavior
,”
J. Appl. Phys.
,
99
(
10
), p.
103903
.10.1063/1.2195899
71.
Han
,
X.
,
Feng
,
Y.
,
Cao
,
Q.
, and
Li
,
L.
,
2015
, “
Three-Dimensional Analysis and Enhancement of Continuous Magnetic Separation of Particles in Microfluidics
,”
Microfluid. Nanofluid.
,
18
(
5–6
), pp.
1209
1220
.10.1007/s10404-014-1516-6
72.
Adams
,
J. D.
,
Kim
,
U.
, and
Soh
,
H. T.
,
2008
, “
Multitarget Magnetic Activated Cell Sorter
,”
Proc. Natl. Acad. Sci.
,
105
(
47
), pp.
18165
18170
.10.1073/pnas.0809795105
73.
Bucar
,
S.
,
Gonçalves
,
A.
,
Rocha
,
E.
,
Barros
,
A.
,
Sousa
,
M.
, and
,
R.
,
2015
, “
DNA Fragmentation in Human Sperm After Magnetic-Activated Cell Sorting
,”
J. Assisted Reprod. Genet.
,
32
(
1
), pp.
147
154
.10.1007/s10815-014-0370-5
74.
Hoshino
,
K.
,
Huang
,
Y.-Y.
,
Lane
,
N.
,
Huebschman
,
M.
,
Uhr
,
J. W.
,
Frenkel
,
E. P.
, and
Zhang
,
X.
,
2011
, “
Microchip-Based Immunomagnetic Detection of Circulating Tumor Cells
,”
Lab Chip
,
11
(
20
), p.
3449
.10.1039/c1lc20270g
75.
Kashanian
,
F.
,
Kokkinis
,
G.
,
Bernardi
,
J.
,
Zand
,
M. R.
,
Shamloo
,
A.
, and
Giouroudi
,
I.
,
2018
, “
A Novel Magnetic Microfluidic Platform for on-Chip Separation of 3 Types of Silica Coated Magnetic Nanoparticles (Fe3O4@SiO2)
,”
Sens. Actuators A
,
270
, pp.
223
230
.10.1016/j.sna.2017.12.047
76.
Del Giudice
,
F.
,
Madadi
,
H.
,
Villone
,
M. M.
,
D'Avino
,
G.
,
Cusano
,
A. M.
,
Vecchione
,
R.
,
Ventre
,
M.
,
Maffettone
,
P. L.
, and
Netti
,
P. A.
,
2015
, “
Magnetophoresis ‘Meets' Viscoelasticity: Deterministic Separation of Magnetic Particles in a Modular Microfluidic Device
,”
Lab Chip
,
15
(
8
), pp.
1912
1922
.10.1039/C5LC00106D
77.
Verbruggen
,
B.
,
Tóth
,
T.
,
Cornaglia
,
M.
,
Puers
,
R.
,
Gijs
,
M. A. M.
, and
Lammertyn
,
J.
,
2015
, “
Separation of Magnetic Microparticles in Segmented Flow Using Asymmetric Splitting Regimes
,”
Microfluid. Nanofluid.
,
18
(
1
), pp.
91
102
.10.1007/s10404-014-1409-8
78.
Sung
,
Y. J.
,
Kim
,
J. Y. H.
,
Choi
,
H. I.
,
Kwak
,
H. S.
, and
Sim
,
S. J.
,
2017
, “
Magnetophoretic Sorting of Microdroplets With Different Microalgal Cell Densities for Rapid Isolation of Fast Growing Strains
,”
Sci. Rep.
,
7
, Article No. 10390.10.1038/s41598-017-10764-6
79.
Lin
,
S.
,
Zhi
,
X.
,
Chen
,
D.
,
Xia
,
F.
,
Shen
,
Y.
,
Niu
,
J.
,
Huang
,
S.
,
Song
,
J.
,
Miao
,
J.
,
Cui
,
D.
, and
Ding
,
X.
,
2019
, “
A Flyover Style Microfluidic Chip for Highly Purified Magnetic Cell Separation
,”
Biosens. Bioelectron.
,
129
, pp.
175
181
.10.1016/j.bios.2018.12.058
80.
Zhou
,
R.
,
Yang
,
Q.
,
Bai
,
F.
,
Werner
,
J. A.
,
Shi
,
H.
,
Ma
,
Y.
, and
Wang
,
C.
,
2016
, “
Fabrication and Integration of Microscale Permanent Magnets for Particle Separation in Microfluidics
,”
Microfluid. Nanofluid.
,
20
, Article No. 110.10.1007/s10404-016-1774-6
81.
Haukanes
,
B.-I.
, and
Kvam
,
C.
,
1993
, “
Application of Magnetic Beads in Bioassays
,”
Biotechnology
,
11
(
1
), pp.
60
63
.10.1038/nbt0193-60
82.
Neurauter
,
A. A.
,
Bonyhadi
,
M.
,
Lien
,
E.
,
Nøkleby
,
L.
,
Ruud
,
E.
,
Camacho
,
S.
, and
Aarvak
,
T.
,
2007
, “
Cell Isolation and Expansion Using Dynabeads®
,”
Adv. Biochem. Eng. Biotechnol.
, 106, pp.
41
73
.10.1007/10_2007_072
83.
Zborowski
,
M.
, and
Chalmers
,
J. J.
,
2011
, “
Rare Cell Separation and Analysis by Magnetic Sorting
,”
Anal. Chem.
,
83
(
21
), pp.
8050
8056
.10.1021/ac200550d
84.
Skjeltorp
,
A. T.
,
1983
, “
One- and Two-Dimensional Crystallization of Magnetic Holes
,”
Phys. Rev. Lett.
,
51
(
25
), pp.
2306
2309
.10.1103/PhysRevLett.51.2306
85.
Cheng
,
R.
,
Zhu
,
T.
, and
Mao
,
L.
,
2014
, “
Three-Dimensional and Analytical Modeling of Microfluidic Particle Transport in Magnetic Fluids
,”
Microfluid. Nanofluid.
,
16
(
6
), pp.
1143
1154
.10.1007/s10404-013-1280-z
86.
Zeng
,
J.
,
Chen
,
C.
,
Vedantam
,
P.
,
Brown
,
V.
,
Tzeng
,
T.-R. J.
, and
Xuan
,
X.
,
2012
, “
Three-Dimensional Magnetic Focusing of Particles and Cells in Ferrofluid Flow Through a Straight Microchannel
,”
J. Micromech. Microeng.
,
22
(
10
), p.
105018
.10.1088/0960-1317/22/10/105018
87.
Liang
,
L.
, and
Xuan
,
X.
,
2012
, “
Diamagnetic Particle Focusing Using Ferromicrofluidics With a Single Magnet
,”
Microfluid. Nanofluid.
,
13
(
4
), pp.
637
643
.10.1007/s10404-012-1003-x
88.
Pamme
,
N.
, and
Manz
,
A.
,
2004
, “
On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates
,”
Anal. Chem.
,
76
(
24
), pp.
7250
7256
.10.1021/ac049183o
89.
Peyman
,
S. A.
,
Kwan
,
E. Y.
,
Margarson
,
O.
,
Iles
,
A.
, and
Pamme
,
N.
,
2009
, “
Diamagnetic Repulsion—A Versatile Tool for Label-Free Particle Handling in Microfluidic Devices
,”
J. Chromatogr. A
,
1216
(
52
), pp.
9055
9062
.10.1016/j.chroma.2009.06.039
90.
Munaz
,
A.
,
Shiddiky
,
M. J. A.
, and
Nguyen
,
N.-T.
,
2018
, “
Magnetophoretic Separation of Diamagnetic Particles Through Parallel Ferrofluid Streams
,”
Sens. Actuators B
,
275
, pp.
459
469
.10.1016/j.snb.2018.07.176
91.
Kye
,
H. G.
,
Park
,
B. S.
,
Lee
,
J. M.
,
Song
,
M. G.
,
Song
,
H. G.
,
Ahrberg
,
C. D.
, and
Chung
,
B. G.
,
2019
, “
Dual-Neodymium Magnet-Based Microfluidic Separation Device
,”
Sci. Rep.
,
9
, Article No. 9502.10.1038/s41598-019-45929-y
92.
Zhao
,
W.
,
Zhu
,
T.
,
Cheng
,
R.
,
Liu
,
Y.
,
He
,
J.
,
Qiu
,
H.
,
Wang
,
L.
,
Nagy
,
T.
,
Querec
,
T. D.
,
Unger
,
E. R.
, and
Mao
,
L.
,
2016
, “
Label-Free and Continuous-Flow Ferrohydrodynamic Separation of Hela Cells and Blood Cells in Biocompatible Ferrofluids
,”
Adv. Funct. Mater.
,
26
(
22
), pp.
3990
3998
.10.1002/adfm.201503838
You do not currently have access to this content.