Abstract

For most older adults, their own homes is the overwhelmingly preferred environment for living and growing older. However, for those living in homes with stairs, the difficulty and risk of injury in stair ascent/descent is a major challenge in their daily life, which may endanger the feasibility of such choice. In this paper, the authors present a novel assistive device, namely RailBot, to help mobility-challenged individuals (including frail older adults) to climb stairs more easily. Unlike the traditional elevators and stair lifts, the RailBot is a highly compact device that can be easily installed in existing stairways, allowing it to benefit a large number of individuals living in homes with stairs. Further, by assisting the users' stair climbing instead of carrying them upstairs, the RailBot enables and encourages the users to maintain and enhance their stair-climbing capabilities, and thus contributes to their long-term physical health. The design details of the RailBot prototype are presented, including the system configuration, the actuation mechanism of the mobile platform, as well as the intuitive control interface for start-stop control and speed regulation. After mounting the prototype in a real-world use environment, a small-scale human study was conducted, with the results clearly demonstrating the effectiveness of the RailBot assistance through the significant reduction of lower-limb muscle activities.

References

1.
Lawler
,
K.
,
2001
, “
Aging in Place: Coordinating Housing and Health Care Provision for America's Growing Elderly Population
,”
Joint Center for Housing Studies of Harvard University
,
Cambridge, MA
.
2.
Cook
,
C. C.
,
Yearns
,
M. H.
, and
Martin
,
P.
,
2005
, “
Aging in Place: Home Modifications Among Rural and Urban Elderly
,”
Hous. Soc.
,
32
(
1
), pp.
85
106
.10.1080/08882746.2005.11430515
3.
World Health Organization
,
2007
,
Global Age-Friendly Cities: A Guide
,
World Health Organization, WHO Press
,
Geneva, Switzerland
.
4.
Farber
,
N.
,
Shinkle
,
D.
,
Lynott
,
J.
,
Fox-Grage
,
W.
, and
Harrell
,
R.
,
2011
, “
Aging in Place: A State Survey of Livability Policies and Practices
,”
AARP Public Policy Institute
,
Washington, DC
.https://assets.aarp.org/rgcenter/ppi/liv-com/aging-in-place-2011-full.pdf
5.
Startzell
,
J. K.
,
Owens
,
D. A.
,
Mulfinger
,
L. M.
, and
Cavanagh
,
P. R.
,
2000
, “
Stair Negotiation in Older People: A Review
,”
J. Am. Geriatr. Soc.
,
48
(
5
), pp.
567
580
.10.1111/j.1532-5415.2000.tb05006.x
6.
Ronai
,
P.
, and
Gallo
,
P. M.
,
2020
, “
The Stair Climb Power Test
,”
ACSM's Health Fitness J.
,
24
(
4
), pp.
38
42
.10.1249/FIT.0000000000000589
7.
National Safety Council
,
2012
,
Injury Facts
,
National Safety Council
,
Itasca, IL
, p.
29
.
8.
Hemenway
,
D.
,
Solnick
,
S. J.
,
Koeck
,
C.
, and
Kytir
,
J.
,
1994
, “
The Incidence of Stairway Injuries in Austria
,”
Accid. Anal. Prev.
,
26
(
5
), pp.
675
679
.10.1016/0001-4575(94)90029-9
9.
EZ-STEP
, 2021, “
Portable, Unique, One of a Kind Stair Climbing Aid!
,” EZ-STEP, accessed Jan. 18, 2021, http://www.ez-step.com/home.html
10.
StairSteady
, 2021, “
A Step Towards Independence
,” StairSteady, accessed January 18, 2021, https://stairsteady.net/
11.
Bobade
,
R. S.
,
Birajdar
,
N. K.
,
Yadav
,
S. K.
, and
Kale
,
S. R.
,
2018
, “
Spring Supportive Mechanism to Assist Stair Climbing
,”
Int. J. Eng. Res. Sci. Technol.
,
7
(
9
), pp.
163
168
. https://www.researchgate.net/publication/342782829_Spring_Supportive_Mechanism_to_Assist_Stair_Climbing
12.
Cooper
,
R. A.
,
Boninger
,
M. L.
,
Cooper
,
R.
,
Dobson
,
A. R.
,
Kessler
,
J.
,
Schmeler
,
M.
, and
Fitzgerald
,
S. G.
,
2003
, “
Use of the Independence 3000 IBOT Transporter at Home and in the Community
,”
J. Spinal Cord Med.
,
26
(
1
), pp.
79
85
.10.1080/10790268.2003.11753665
13.
Sugahara
,
Y.
,
Yonezawa
,
N.
, and
Kosuge
,
K.
, “
A Novel Stair-Climbing Wheelchair With Transformable Wheeled Four-Bar Linkages
,”
IEEE/RSJ International Conference on Intelligent Robots and System
,
Taipei, Taiwan
, Oct. 18–22, pp.
3333
3339
.10.1109/IROS.2010.5648906
14.
Quaglia
,
G.
,
Franco
,
W.
, and
Oderio
,
R.
,
2011
, “
Wheelchair.q, A Motorized Wheelchair With Stair Climbing Ability
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1601
1609
.10.1016/j.mechmachtheory.2011.07.005
15.
Lawn
,
M. J.
, and
Ishimatsu
,
T.
,
2003
, “
Modeling of a Stair-Climbing Wheelchair Mechanism With High Single-Step Capability
,”
IEEE Trans. Neural Syst. Rehabil.
,
11
(
3
), pp.
323
332
.10.1109/TNSRE.2003.816875
16.
Quaglia
,
G.
,
Franco
,
W.
, and
Oderio
,
R.
,
2009
, “
Wheelchair.q, A Mechanical Concept for a Stair Climbing Wheelchair
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guilin, China
, Dec. 19–23, pp.
800
805
.10.1109/ROBIO.2009.5420572
17.
Quaglia
,
G.
, and
Nisi
,
M.
,
2017
, “
Design of a Self-Leveling Cam Mechanism for a Stair Climbing Wheelchair
,”
Mech. Mach. Theory
,
112
, pp.
84
104
.10.1016/j.mechmachtheory.2017.02.003
18.
Scewo
,
A. G.
,
2021
, “
Scewo
,” Scewo,
Winterthur, Switzerland
, accessed Jan. 18, 2021, https://scewo.ch/en/
19.
Laffont
,
I.
,
Guillon
,
B.
,
Fermanian
,
C.
,
Pouillot
,
S.
,
Even-Schneider
,
A.
,
Boyer
,
F.
,
Ruquet
,
M.
,
Aegerter
,
P.
,
Dizien
,
O.
, and
Lofaso
,
F.
,
2008
, “
Evaluation of a Stair-Climbing Power Wheelchair in 25 People With Tetraplegia
,”
Arch. Phys. Med. Rehabil.
,
89
(
10
), pp.
1958
1964
.10.1016/j.apmr.2008.03.008
20.
Taketomi
,
T.
, and
Sankai
,
Y.
,
2012
, “
Stair Ascent Assistance for Cerebral Palsy With Robot Suit HAL
,”
IEEE/SICE International Symposium on System Integration (SII)
,
Fukuoka, Japan
, Dec. 16–18, pp.
331
336
.10.1109/SII.2012.6427274
21.
Zhang
,
Y.
,
Tanaka
,
E.
,
Lee
,
H.
,
Saegusa
,
S.
, and
Yuge
,
L.
,
2017
, “
User-Friendly Walking Assistance Device Able to Walk on Stairs Safely
,”
IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Munich, Germany
, July 3–7, pp.
839
844
.10.1109/AIM.2017.8014122
22.
Jang
,
J.
,
Kim
,
K.
,
Lee
,
J.
,
Lim
,
B.
, and
Shim
,
Y.
,
2016
, “
Assistance Strategy for Stair Ascent With a Robotic Hip Exoskeleton
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, Oct. 9–14, pp.
5658
5663
.10.1109/IROS.2016.7759832
23.
Daniel
,
G. I.
, and
Daniela
,
T.
,
2018
, “
Motion Assistance With an Exoskeleton for Stair Climb
,”
IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)
,
Cluj-Napoca, Romania
, May 24–26, pp.
1
6
.10.1109/AQTR.2018.8402731
24.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Auton. Syst.
,
64
, pp.
120
136
.10.1016/j.robot.2014.09.032
25.
Azocar
,
A. F.
,
Mooney
,
L. M.
,
Hargrove
,
L. J.
, and
Rouse
,
E. J.
,
2018
, “
Design and Characterization of an Open-Source Robotic Leg Prosthesis
,”
Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
Enschede, The Netherlands
, Aug. 26–29, pp.
111
118
.10.1109/BIOROB.2018.8488057
You do not currently have access to this content.