Abstract

Robots utilize graspers for interacting with an environment. Conventional robotic graspers have difficulty conforming to objects of varied shape and exerting varying grasping forces. Variable stiffness soft robotic graspers provide these features but face issues such as slow response time, the requirement of external power packs for operation and low variation of stiffness. A variable stiffness compliant robotic grasper that is simple in design and operation would improve end effectors used in assistive robotics and prostheses for handling a wide array of objects. In this paper, we present the design of a novel variable stiffness compliant robotic grasper that can change its stiffness through structural transformations. Current designs utilizing structural transformations do not provide shape conformance while grasping objects. We propose a design for a soft robotic grasper using the concept of stability of truss structures. This design is capable of partially conforming to the surface of an object being grasped and can rapidly vary its stiffness utilizing compliant rotating elements embedded in the grasper jaws. The grasper behavior is modeled using finite element analysis (FEA) and validated experimentally. Our results demonstrate that structural transformation of flexible elements is a potential solution for achieving variable stiffness in a grasper.

References

1.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Robot. Automat. Mag.
,
23
(
3
), pp.
93
106
.10.1109/MRA.2016.2582718
2.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Wiley Adv. Mat.
,
30
(
29
), p.
1707035
.10.1002/adma.201707035
3.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
,
2007
,
Robot Grippers
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, pp.
367
375
.
4.
Carbone
,
G.
, ed.,
2012
,
Grasping in Robotics
, Vol.
10
,
Springer-Verlag
,
London
, p.
10
.
5.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2003
, “
Towards Grasping in Unstructured Environments: Optimization of Grasper Compliance and Configuration
,”
Proceedings of the IEEE/RSJ IROS
,
Las Vegas, NV
, Vol.
4
,
Oct. 27–31
, pp.
3410
3416
.10.1109/IROS.2003.1249683
6.
Pratt
,
G. A.
,
Williamson
,
M. M.
,
Dillworth
,
P.
,
Pratt
,
J.
, and
Wright
,
A.
,
1997
, “
Stiffness Isn't Everything
,”
Experimental Robotics IV
(Lecture Notes in Control and Information Sciences, Vol.
223
).
Springer
,
Berlin, Heidelberg
.
7.
Carbone
,
G.
,
2011
, “
Stiffness Analysis and Experimental Validation of Robotic Systems
,”
Front. Mech. Eng.
,
6
(
2
), pp.
182
196
.10.1007/s11465-011-0221-3
8.
George Thuruthel
,
T.
,
Ansari
,
Y.
,
Falotico
,
E.
, and
Laschi
,
C.
,
2018
, “
Control Strategies for Soft Robotic Manipulators: A Survey
,”
Soft Rob.
,
5
(
2
), pp.
149
163
.10.1089/soro.2017.0007
9.
KINOVA
,
2020
, “JACO Assistive Robotic Arm,” KINOVA, Quebec, Canada, accessed Nov. 20, 2020, https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm
10.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
R.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
PNAS
,
107
(
44
), pp.
18809
18814
.10.1073/pnas.1003250107
11.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Robot.
,
29
(
4
), pp.
1031
1042
.10.1109/TRO.2013.2256313
12.
Hines
,
L.
,
Arabagi
,
V.
, and
Sitti
,
M.
,
2012
, “
Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
987
990
.10.1109/TRO.2012.2197313
13.
Shiva
,
A.
,
Stilli
,
A.
,
Noh
,
Y.
,
Faragasso
,
A.
,
De Falco
,
I.
,
Gerboni
,
G.
,
Cianchetti
,
M.
,
Menciassi
,
A.
,
Althoefer
,
K.
, and
Wurdemann
,
H. A.
,
2016
, “
Tendon-Based Stiffening for a Pneumatically Actuated Soft Manipulator
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
632
637
.10.1109/LRA.2016.2523120
14.
Nagase
,
J.
,
Wakimoto
,
S.
,
Satoh
,
T.
,
Saga
,
N.
, and
Suzumori
,
K.
,
2011
, “
Design of a Variable-Stiffness Robotic Hand Using Pneumatic Soft Rubber Actuators
,”
Smart Mater. Struct.
,
20
(
10
), p.
105015
.10.1088/0964-1726/20/10/105015
15.
Nishida
,
T.
,
Okatani
,
Y.
, and
Tadakuma
,
K.
,
2016
, “
Development of Universal Robot Gripper Using MRα Fluid
,”
Int. J. Humanoid Robot.
,
13
(
4
), p.
1650017
.
16.
Cardin-Catalan
,
D.
,
del Pobil
,
A. P.
, and
Morales
,
A.
,
2019
, “
Analysis of Variable-Stiffness Soft Finger Joints
,”
M.
Strand
,
R.
Dillmann
,
E.
Menegatti
,
S.
Ghidoni
, eds.,
Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing
, Vol.
867
,
Springer
,
Cham, Switzerland
.
17.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081916
.10.1063/1.2695785
18.
Giannaccini
,
M. E.
,
Georgilas
,
I.
,
Horsfield
,
I.
,
Peiris
,
B. H. P. M.
,
Lenz
,
A.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2014
, “
A Variable Compliance, Soft Gripper
,”
Auton. Robot
,
36
(
1–2
), pp.
93
107
.10.1007/s10514-013-9374-8
19.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.10.1016/j.matdes.2013.11.084
20.
Zhu
,
H.
,
Li
,
X.
,
Chen
,
W.
, and
Zhang
,
C.
,
2019
, “
Flexure-Based Variable Stiffness Gripper for Large-Scale Grasping Force Regulation With Vision
,”
Int. Conf. Intell. Robot. Appl.
,
11740
, pp.
346
357
.
21.
Festo
,
2009
, “
BionicTripod With FinGripper
,” Festo, Ostfildern, Germany, accessed Nov. 20, 2020, https://www.festo.com/rep/en_corp/assets/pdf/Tripod_en.pdf
22.
Pfaff
,
O.
,
Simeonov
,
S.
,
Cirovic
,
I.
, and
Stano
,
P.
,
2011
, “
Application of Fin Ray Effect Approach for Production Process Automation
,”
Proceedings of DAAAM Symposium
,
Vienna, Austria
,
Nov. 23-26
, pp.
1247
1249
.
23.
Al Abeach
,
L. A.
,
Nefti-Meziani
,
S.
, and
Davis
,
S.
,
2017
, “
Design of a Variable Stiffness Soft Dexterous Gripper
,”
Soft Rob.
,
4
(
3
), pp.
274
284
.10.1089/soro.2016.0044
24.
Yufei
,
H.
,
Tianmiao
,
W.
,
Xi
,
F.
,
Kang
,
Y.
,
Ling
,
M.
,
Juan
,
G.
, and
Li
,
W.
,
2017
, “
A Variable Stiffness Soft Robotic Gripper With Low-Melting-Point Alloy
,” Proceedings of the 36th IEEE Chinese Control Conference (
CCC
), Dalian, China, July 26–28, pp.
6781
6786
.10.23919/ChiCC.2017.8028427
25.
Haibin
,
Y.
,
Cheng
,
K.
,
Junfeng
,
L.
, and
Guilin
,
Y.
,
2018
, “
Modeling of Grasping Force for a Soft Robotic Gripper With Variable Stiffness
,”
Mech. Mach. Theory
,
128
, pp.
254
274
.10.1016/j.mechmachtheory.2018.05.005
26.
Soft Robotics
,
2020
, “
mGrip Cobot Kit
,” Soft Robotics, Bedford, MA, accessed Nov. 20, 2020, https://www.softroboticsinc.com/mgrip-cobot-kits
27.
Ultimaker
,
2020
, “
Technical Data Sheet—Ultimaker Nylon Version 4.001
,” Ultimaker, Utrecht, The Netherlands, accessed Nov. 20, 2020 https://support.ultimaker.com/hc/en-us/articles/360011962600-Ultimaker-Nylon-TDS
28.
Ultimaker
,
2020
, “
Technical Data Sheet—Ultimaker TPU 95A Version 4.001
,” Utrecht, The Netherlands, accessed Nov. 20, 2020, https://support.ultimaker.com/hc/en-us/articles/360012664440-Ultimaker-TPU-95A-TDS
29.
Su
,
H.
,
Ovur
,
S. E.
,
Zhou
,
X.
,
Qi
,
W.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2020
, “
Depth Vision Guided Hand Gesture Recognition Using Electromyographic Signals
,”
Adv. Rob.
,
34
(
15
), pp.
985
997
.https://www.tandfonline.com/doi/abs/10.1080/01691864.2020.1713886?journalCode=tadr20
You do not currently have access to this content.