Abstract

Tele-operation has brought about a paradigm shift in the way minimally invasive surgeries are carried out. Several tele-operated robotic systems have been developed in the last three decades. In this research work, we present a practical approach for the complete design of a six degree-of-freedom (DoF) master–slave tele-operated robotic system with limited resources. This research work elaborates on the methodology followed by us for the complete system design, methods for simplifying the surgical tool design with decoupled DoF wrist utilizing stationary wire guides instead of pulleys, and method of reducing the number of balancing masses required for gravity compensation of master manipulator arms. We also demonstrate the avenues for utilizing compliant mechanism for several mechanisms of the system to reduce complexity and to mitigate the issue of biofouling. The concepts and design methodology described in this paper would serve as a starting point and design guideline for future designers of such systems in resource-constrained environments.

References

1.
Vertut
,
J.
, and
Coiffet
,
P.
,
1986
, “
Robot Technology
,”
Teleoperation and Robotics: Evolution and Development
, Vol.
3A
, Kogan Page Ltd, London, UK.
2.
Goertz
,
R. C.
,
1952
, “
Fundamentals of General-Purpose Remote Manipulators
,”
Nucleonics
,
10
(
11
), pp.
36
42
.https://www.osti.gov/biblio/4394310-fundamentals-general-purpose-remote-manipulators
3.
Marescaux
,
J.
,
Leroy
,
J.
,
Rubino
,
F.
,
Smith
,
M.
,
Vix
,
M.
,
Simone
,
M.
, and
Mutter
,
D.
,
2002
, “
Transcontinental Robot-Assisted Remote Telesurgery: Feasibility and Potential Applications
,”
Ann. Surg.
,
235
(
4
), pp.
487
492
.10.1097/00000658-200204000-00005
4.
Intuitive Surgical, Inc.,
2020
, “
Financial Results
,” Intuitive Surgical, Inc., Sunnyvale, CA, accessed Dec. 25, 2020, https://isrg.gcs-web.com/news-releases/news-release-details/intuitive-announces-second-quarter-earnings-0
5.
Titan Medical, Inc.
,
2020
, “
Enos System
,” Titan Medical, Inc., Toronto, ON, Canada, accessed Dec. 25, 2020, https://titanmedicalinc.com/technology/
6.
CMR Surgical
,
2020
, “
Versius Surgical Robotic System
,” CMR Surgical, Cambridge, UK, accessed Dec. 25, 2020, https://cmrsurgical.com/versius/
7.
Samalavicius
,
N. E.
,
Janusonis
,
V.
,
Siaulys
,
R.
,
Jasėnas
,
M.
,
Deduchovas
,
O.
,
Venckus
,
R.
,
Ezerskiene
,
V.
,
Paskeviciute
,
R.
, and
Klimaviciute
,
G.
,
2020
, “
Robotic Surgery Using Senhance® Robotic Platform: Single Center Experience With First 100 Cases
,”
J. Rob. Surg.
,
14
(
2
), pp.
371
376
.10.1007/s11701-019-01000-6
8.
Distalmotion SA
,
2020
, “Dexter,” Distalmotion SA, Épalinges, Switzerland, accessed Dec. 25, 2020, https://www.distalmotion.com/product/
9.
Meere Company, Inc.
,
2020
, “
Revo‐i Robotic Platform
,” Meere Company, Seoul, South Korea, accessed Dec. 25, 2020, http://revosurgical.com/#/main.html
10.
avateramedical GmbH
,
2020
, “Avatera System,” avateramedical GmbH, Jena, Thuringia, Germany, accessed Dec. 25, 2020, https://www.avatera.eu/en/avatera-system
11.
Hill
,
J. W.
,
Green
,
P. S.
,
Jensen
,
J. F.
,
Gorfu
,
Y.
, and
Shah
,
A. S.
,
1994
, “
Telepresence Surgery Demonstration System
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Diego, CA, May 8– 13, pp.
2302
2307
.10.1109/ROBOT.1994.350942
12.
Schenker
,
P. S.
,
Das
,
H.
, and
Ohm
,
T. R.
,
1995
, “
A New Robot for High Dexterity Microsurgery
,”
International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine
, Nice, France, Apr. 3–6, pp.
115
122
.10.1007/978-3-540-49197-2_13
13.
Madhani
,
A. J.
,
Niemeyer
,
G.
, and
Salisbury
,
J. K.
,
1998
, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications
, Victoria, BC, Canada, Oct. 17, pp.
936
944
.10.1109/IROS.1998.727320
14.
Cavusoglu
,
M. C.
,
Tendick
,
F.
,
Cohn
,
M.
, and
Sastry
,
S. S.
,
1999
, “
A Laparoscopic Telesurgical Workstation
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
728
739
.10.1109/70.782027
15.
Mitsuishi
,
M.
,
Arata
,
J.
,
Tanaka
,
K.
,
Miyamoto
,
M.
,
Yoshidome
,
T.
,
Iwata
,
S.
,
Hashizume
,
M.
, and
Warisawa
,
S.
,
2003
, “
Development of a Remote Minimally-Invasive Surgical System With Operational Environment Transmission Capability
,”
IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Sept. 14–19, pp.
2663
2670
.10.1109/ROBOT.2003.1241995
16.
Hagn
,
U.
,
Konietschke
,
R.
,
Tobergte
,
A.
,
Nickl
,
M.
,
Jörg
,
S.
,
Kübler
,
B.
,
Le-Tien
,
L.
,
Passig
,
G.
,
Gröger
,
M.
,
Fröhlich
,
F.
,
Seibold
,
U.
,
Le-Tien
,
L.
,
Albu-Schäffer
,
A.
,
Nothhelfer
,
A.
,
Hacker
,
F.
,
Grebenstein
,
M.
, and
Hirzinger
,
G.
,
2010
, “
DLR MiroSurge: A Versatile System for Research in Endoscopic Telesurgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
5
(
2
), pp.
183
193
.10.1007/s11548-009-0372-4
17.
Lum
,
M. J. H.
,
Friedman
,
D. C.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
, “
The RAVEN: Design and Validation of a Telesurgery System
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1183
1197
.10.1177/0278364909101795
18.
Van den Bedem
,
L. J. M.
,
2010
, “
Realization of a Demonstrator Slave for Robotic Minimally Invasive Surgery
,”
Doctoral dissertation
,
Eindhoven University of Technology
,
Eindhoven, The Netherlands
.10.6100/IR684835
19.
Kawashima
,
K.
,
Kanno
,
T.
, and
Tadano
,
K.
,
2019
, “
Robots in Laparoscopic Surgery: Current and Future Status
,”
BMC Biomed. Eng.
,
1
(
1
), p.
12
.10.1186/s42490-019-0012-1
20.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.10.1109/TBME.2006.875716
21.
Rosen
,
J.
,
MacFarlane
,
M.
,
Richards
,
C.
,
Hannaford
,
B.
, and
Sinanan
,
M.
,
1999
, “
Surgeon-Tool Force/Torque Signatures—Evaluation of Surgical Skills in Minimally Invasive Surgery
,”
Medicine Meets Virtual Reality
, IOS Press, Amsterdam, The Netherlands, pp.
290
296
.10.3233/978-1-60750-906-6-290
22.
Nisky
,
I.
,
Patil
,
S.
,
Hsieh
,
M. H.
, and
Okamura
,
A. M.
,
2013
, “
Kinematic Analysis of Motor Performance in Robot-Assisted Surgery: A Preliminary Study
,” IOS Press, Amsterdam, The Netherlands, pp.
302
308
.10.3233/978-1-61499-209-7-302
23.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.10.1002/rcs.453
24.
Funda
,
J.
,
Eldridge
,
B. N.
,
Gruben
,
K.
,
Gomory
,
S.
, and
Taylor
,
R. H.
,
1995
, “
Comparison of Two Manipulator Designs for Laparoscopic Surgery
,”
Proc. SPIE
2351
, pp.
172
183
.10.1117/12.197308
25.
3D Systems
,
2020
, “
Phantom Premium
,” 3D Systems, RockHill, CA, accessed Dec. 25, 2020, https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium
26.
Force Dimension
,
2020
, “
Omega-7
,” Force Dimension, Nyon, Switzerland, accessed Dec. 25, 2020, http://www.forcedimension.com/products/omega-7/overview
27.
DiMaio
,
S.
,
Hanuschik
,
M.
, and
Kreaden
,
U.
,
2011
, “
The da Vinci Surgical System
,”
Surgical Robotics
,
Springer
,
Boston, MA
, pp.
199
217
.
28.
Tao
,
Y.
,
Chen
,
F.
, and
Xiong
,
H.
,
2014
, “
Kinematics and Workspace of a 4-DOF Hybrid Palletizing Robot
,”
Adv. Mech. Eng.
,
6
, p.
125973
.10.1155/2014/125973
29.
Chandrasekaran
,
K.
,
Sivaraman
,
S.
, and
Thondiyath
,
A.
,
2015
, “
Static Balancing and Inertia Compensation of a Master Manipulator for Tele-Operated Surgical Robot Application
,”
Proceedings of the Conference on Advances in Robotics
, Goa, India, July 2–4, pp.
1
5
.10.1145/2783449.2783463
30.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.10.1080/01691864.2015.1090334
31.
Mimic Technologies, Inc.
,
2020
, “
dV-Trainer
,” Mimic Technologies, Seattle, WA, accessed Dec. 25, 2020, https://mimicsimulation.com/dv-trainer/
32.
Kota
,
S.
,
Lu
,
K. J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.10.1115/1.2056561
33.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
34.
Stratasys, Ltd.
,
2020
, “
VeroClear Datasheet
,” Stratasys, Ltd., Rehovot, Israel, accessed Dec. 25, 2020, https://www.stratasys.com/-/media/files/material-spec-sheets/mds_pj_veroclear_0320a.pdf
35.
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2017
, “
Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool
,”
ASME J. Med. Devices
,
11
(
1
), p. 014502.10.1115/1.4034879
36.
Chandrasekaran
,
K.
,
Sathuluri
,
A.
, and
Thondiyath
,
A.
,
2017
, “
MagNex—Expendable Robotic Surgical Tooltip
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
4221
4226
.10.1109/ICRA.2017.7989486
37.
Zhao
,
B.
, and
Nelson
,
C. A.
,
2013
, “
Decoupled Cable-Driven Grasper Design Based on Planetary Gear Theory
,”
ASME J. Med. Devices
,
7
(
2
), p.
020918
.10.1115/1.4024329
38.
Niu
,
G.
,
Pan
,
B.
,
Zhang
,
F.
,
Feng
,
H.
, and
Fu
,
Y.
,
2018
, “
Improved Surgical Instruments Without Coupled Motion Used in Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
6
), p.
e1942
.10.1002/rcs.1942
39.
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2020
, “
Design of a Tether‐Driven Minimally Invasive Robotic Surgical Tool With Decoupled Degree‐of‐Freedom Wrist
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
16
(
3
), p.
e2084
.10.1002/rcs.2084
40.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.10.1016/j.mechmachtheory.2007.12.008
41.
Su
,
H.
,
Hu
,
Y.
,
Karimi
,
H. R.
,
Knoll
,
A.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2020
, “
Improved Recurrent Neural Network-Based Manipulator Control With Remote Center of Motion Constraints: Experimental Results
,”
Neural Networks
,
131
, pp.
291
299
.10.1016/j.neunet.2020.07.033
42.
Van den Bedem
,
L.
,
Hendrix
,
R.
,
Rosielle
,
N.
,
Steinbuch
,
M.
, and
Nijmeijer
,
H.
,
2009
, “
Design of a Minimally Invasive Surgical Teleoperated Master-Slave System With Haptic Feedback
,”
International Conference on Mechatronics and Automation
, Changchun, China, Aug. 9–12, pp.
60
65
.10.1109/ICMA.2009.5246502
43.
De Gersem
,
G.
,
2005
, “
Kinaesthetic Feedback and Enhanced Sensitivity in Robotic Endoscopic Telesurgery
,”
Doctoral dissertation
,
Catholic University of Leuven
,
Leuven, Belgium
.https://lirias.kuleuven.be/retrieve/65619
44.
Su
,
H.
,
Qi
,
W.
,
Yang
,
C.
,
Sandoval
,
J.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2020
, “
Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2943
2949
.10.1109/LRA.2020.2974445
You do not currently have access to this content.