Abstract

Preparation of biological samples for further processing or analysis is generally performed manually by means of standard mechanical tools such as scalpels or biopsy punches. While this approach is uncomplicated and swift, it entails constraints such as low, operator-dependent cutting accuracy and reproducibility. Tissue segments surrounding the cut may further suffer mechanical and thermal damage due to shear forces and friction between tool and sample. These hindrances affect procedures both in the laboratory environment as well as within clinical settings. A system has been developed leveraging robotic positioning and laser light for precise, controlled, and contactless tissue ablation, and providing a concise and intuitive graphical user interface. Additionally, sterility of the process is demonstrated, a paramount element for clinical application. The proposed process does not require sterilization of the robotic components or the lasers, easing a prospective integration into existing workflows. In the context of this work, mainly cartilage repair surgery is targeted. The proposed system allows for highly accurate and reproducible shaping of the cartilage lesion area as well as its corresponding engineered cartilage graft, possibly leading to better and faster integration at the defect site. Promising results could be obtained in a first test series with human cartilage samples, validating the functionality of the preparation system and the feasibility of the sterility concept.

References

1.
Sullivan
,
R.
,
1998
, “
Proto-Surgery in Ancient Egypt
,”
Acta Med.
,
41
(
3
), pp.
109
120
.10.14712/18059694.2019.174
2.
Kirkup
,
J.
,
2006
,
The Evolution of Surgical Instruments: An Illustrated History From Ancient Times to the Twentieth Century
,
Jeremy Norman Company
,
Novato, CA
.
3.
Cartiaux
,
O.
,
Banse
,
X.
,
Paul
,
L.
,
Francq
,
B. G.
,
Aubin
,
C.-É.
, and
Docquier
,
P.-L.
,
2013
, “
Computer-Assisted Planning and Navigation Improves Cutting Accuracy During Simulated Bone Tumor Surgery of the Pelvis
,”
Comput. Aided Surg.
,
18
(
1–2
), pp.
19
26
.10.3109/10929088.2012.744096
4.
De
,
S.
,
Rosen
,
J.
,
Dagan
,
A.
,
Hannaford
,
B.
,
Swanson
,
P.
, and
Sinanan
,
M.
,
2007
, “
Assessment of Tissue Damage Due to Mechanical Stresses
,”
Int. J. Rob. Res.
,
26
(
11–12
), pp.
1159
1171
.10.1177/0278364907082847
5.
Robert Podsędkowski
,
L.
,
Moll
,
J.
,
Moll
,
M.
, and
Frącczak
,
Ł.
,
2014
, “
Are the Surgeon's Movements Repeatable? An Analysis of the Feasibility and Expediency of Implementing Support Procedures Guiding the Surgical Tools and Increasing Motion Accuracy During the Performance of Stereotypical Movements by the Surgeon
,”
Pol. J. Thorac. Cardiovasc. Surg.
,
1
(
1
), pp.
90
101
.10.5114/kitp.2014.41941
6.
Beltrán Bernal
,
L. M.
,
Abbasi
,
H.
, and
Zam
,
A.
,
2020
, “
Laser in Bone Surgery
,”
Lasers in Oral and Maxillofacial Surgery
,
Springer
,
Cham, Switzerland
, pp.
99
109
.10.1007/978-3-030-29604-9 9
7.
Baek
,
K.-W.
,
Deibel
,
W.
,
Marinov
,
D.
,
Griessen
,
M.
,
Dard
,
M.
,
Bruno
,
A.
,
Zeilhofer
,
H.-F.
,
Cattin
,
P. C.
, and
Juergens
,
P.
,
2015
, “
A Comparative Investigation of Bone Surface After Cutting With Mechanical Tools and Er:YAG Laser
,”
Lasers Surg. Med.
,
47
(
5
), pp.
426
432
.10.1002/lsm.22352
8.
Baek
,
K-W.
,
Deibel
,
W.
,
Marinov
,
D.
,
Griessen
,
M.
,
Bruno
,
A.
,
Zeilhofer
,
H.-F.
,
Cattin
,
P.
, and
Juergens
,
P.
,
2015
, “
Clinical Applicability of Robot-Guided Contact-Free Laser Osteotomy in Cranio-Maxillo-Facial Surgery: In-Vitro Simulation and In-Vivo Surgery in Minipig Mandibles
,”
Br. J. Oral Maxillofac. Surg.
,
53
(
10
), pp.
976
981
.10.1016/j.bjoms.2015.07.019
9.
Pidro
,
A.
,
Biscevic
,
A.
,
Pjano
,
M. A.
,
Mravicic
,
I.
,
Bejdic
,
N.
, and
Bohac
,
M.
,
2019
, “
Excimer Lasers in Refractive Surgery
,”
Acta Inf. Med.
,
27
(
4
), p.
278
.10.5455/aim.2019.27.278-283
10.
Jacques
,
S. L.
,
1993
, “
Role of Tissue Optics and Pulse Duration on Tissue Effects During High-Power Laser Irradiation
,”
Appl. Opt.
,
32
(
13
), pp.
2447
2454
.10.1364/AO.32.002447
11.
Boulnois
,
J.-L.
,
1986
, “
Photophysical Processes in Recent Medical Laser Developments: A Review
,”
Lasers Med. Sci.
,
1
(
1
), pp.
47
66
.10.1007/BF02030737
12.
Niemz
,
M. H.
,
2007
,
Laser-Tissue Interactions
, 3rd ed.,
Springer
,
Berlin
.
13.
Zam
,
A.
,
2020
, “
Laser–Tissue Interaction
,”
Lasers in Oral and Maxillofacial Surgery
,
Springer
,
Berlin
, pp.
25
34
.
14.
Khlebtsov
,
N.
,
Maksimova
,
I.
,
Meglinski
,
I.
,
Wang
,
L.
, and
Tuchin
,
V.
,
2016
,
Handbook of Optical Biomedical Diagnostics
(Light-Tissue Interaction), Vol. 1,
SPIE Press
,
Bellingham, WA
.
15.
Vogel
,
A.
, and
Venugopalan
,
V.
,
2010
, “
Pulsed Laser Ablation of Soft Biological Tissues
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
Springer
,
Dordrecht, The Netherlands
, pp.
551
615
.
16.
Abbasi
,
H.
,
Rauter
,
G.
,
Guzman
,
R.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2018
, “
Differentiation of Femur Bone From Surrounding Soft Tissue Using Laser-Induced Breakdown Spectroscopy as a Feedback System for Smart Laserosteotomy
,”
Proc. SPIE
10685
, pp. 1068519-1–1068519-8.10.1117/12.2309473
17.
Abbasi
,
H.
,
Rauter
,
G.
,
Guzman
,
R.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2018
, “
Laser-Induced Breakdown Spectroscopy as a Potential Tool for Autocarbonization Detection in Laserosteotomy
,”
J. Biomed. Opt.
,
23
(
7
), p.
1
.10.1117/1.JBO.23.7.071206
18.
Luebbers
,
H.-T.
,
Messmer
,
P.
,
Obwegeser
,
J. A.
,
Zwahlen
,
R. A.
,
Kikinis
,
R.
,
Graetz
,
K. W.
, and
Matthews
,
F.
,
2008
, “
Comparison of Different Registration Methods for Surgical Navigation in Cranio-Maxillofacial Surgery
,”
J. Cranio-Maxillofac. Surg.
,
36
(
2
), pp.
109
116
.10.1016/j.jcms.2007.09.002
19.
McDonald
,
C. P.
,
Peters
,
T. M.
,
King
,
G. J.
, and
Johnson
,
J. A.
,
2009
, “
Computer Assisted Surgery of the Distal Humerus Can Employ Contralateral Images for Pre-Operative Planning, Registration, and Surgical Intervention
,”
J. Shoulder Elbow Surg.
,
18
(
3
), pp.
469
477
.10.1016/j.jse.2009.01.028
20.
Eugster
,
M.
,
Cattin
,
P. C.
,
Zam
,
A.
, and
Rauter
,
G.
,
2018
, “
A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1306
1311
.10.1109/IROS.2018.8594188
21.
Mumme
,
M.
,
Barbero
,
A.
,
Miot
,
S.
,
Wixmerten
,
A.
,
Feliciano
,
S.
,
Wolf
,
F.
,
Asnaghi
,
A. M.
,
Baumhoer
,
D.
,
Bieri
,
O.
,
Kretzschmar
,
M.
,
Pagenstert
,
G.
,
Haug
,
M.
,
Schaefer
,
D. J.
,
Martin
,
I.
, and
Jakob
,
M.
,
2016
, “
Nasal Chondrocyte-Based Engineered Autologous Cartilage Tissue for Repair of Articular Cartilage Defects: An Observational First-in-Human Trial
,”
Lancet
,
388
(
10055
), pp.
1985
1994
.10.1016/S0140-6736(16)31658-0
22.
Mehari
,
F.
,
Rohde
,
M.
,
Knipfer
,
C.
,
Kanawade
,
R.
,
KläMpfl
,
F.
,
Adler
,
W.
,
Stelzle
,
F.
, and
Schmidt
,
M.
,
2014
, “
Laser Induced Breakdown Spectroscopy for Bone and Cartilage Differentiation-Ex Vivo Study as a Prospect for a Laser Surgery Feedback Mechanism
,”
Biomed. Opt. Express
,
5
(
11
), pp.
4013
4023
.10.1364/BOE.5.004013
23.
Frisbie
,
D. D.
,
Morisset
,
S.
,
Ho
,
C. P.
,
Rodkey
,
W. G.
,
Steadman
,
J. R.
, and
Mcllwraith
,
C. W.
,
2006
, “
Effects of Calcified Cartilage on Healing of Chondral Defects Treated With Microfracture in Horses
,”
Am. J. Sports Med.
,
34
(
11
), pp.
1824
1831
.10.1177/0363546506289882
24.
Abbasi
,
H.
,
Sugiarto
,
I.
,
Rauter
,
G.
,
Guzman
,
R.
,
Cattin
,
P.
, and
Zam
,
A.
,
2018
, “
Pilot Ex Vivo Study of Laser-Induced Breakdown Spectroscopy to Detect Bone Dehydration: An Approach for Irrigation Feedback in Laserosteotomy
,”
International Conference on Electrical Engineering and Computer Science (ICEECS)
,
Kuta, Indonesia
,
Nov. 13
, pp.
168
171
.10.5281/zenodo.3514693
25.
Duverney
,
C.
,
Abbasi
,
H.
,
Beltra
,
Ń.
,
Bernal
,
L. M.
,
Stauber
,
T.
,
Snedeker
,
J. G.
,
Cattin
,
P. C.
,
Zam
,
A.
, and
Rauter
,
G.
,
2021
, “
Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System
,” Seventh International Workshop on Medical and Service Robots (
MESROB2020
), Basel, Switzerland, July 8–10, pp.
219
226
.10.1007/978-3-030-58104-6_25
26.
Tulea
,
C.-A.
,
Caron
,
J.
,
Gehlich
,
N.
,
Lenenbach
,
A.
,
Noll
,
R.
, and
Loosen
,
P.
,
2015
, “
Laser Cutting of Bone Tissue Under Bulk Water With a Pulsed PS-Laser at 532 nm
,”
J. Biomed. Opt.
,
20
(
10
), p.
105007
.10.1117/1.JBO.20.10.105007
27.
Abbasi
,
H.
,
Beltrán
,
L.
,
Rauter
,
G.
,
Guzman
,
R.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2017
, “
Effect of Cooling Water on Ablation in Er: YAG Laserosteotome of Hard Bone
,”
Proc. SPIE
10453
, pp. 104531I-1–104531I-4.10.1117/12.2272138
28.
Quantel Technologies
,
2014
, “
Q-Smart 450/850 User Manual
,”
Quantel Technologies
,
Les Ulis, France
.
29.
Hopp
,
M.
,
Rogaschewski
,
S.
, and
Groth
,
T.
,
2003
, “
Testing the Cytotoxicity of Metal Alloys Used as Magnetic Prosthetic Devices
,”
J. Mater. Sci.: Mater. Med.
,
14
(
4
), pp.
335
345
.10.1023/A:1022931915709
30.
Kim
,
D.-H.
,
Lee
,
S.-H.
,
Kim
,
K.-N.
,
Kim
,
K.-M.
,
Shim
,
I.-B.
, and
Lee
,
Y.-K.
,
2005
, “
Cytotoxicity of Ferrite Particles by MTT and Agar Diffusion Methods for Hyperthermic Application
,”
J. Magn. Magn. Mater.
,
293
(
1
), pp.
287
292
.10.1016/j.jmmm.2005.02.078
31.
Snedeker
,
J. G.
, and
Foolen
,
J.
,
2017
, “
Tendon Injury and Repair—A Perspective on the Basic Mechanisms of Tendon Disease and Future Clinical Therapy
,”
Acta Biomater.
,
63
, pp.
18
36
.10.1016/j.actbio.2017.08.032
32.
Stauber
,
T.
,
Blache
,
U.
, and
Snedeker
,
J. G.
,
2020
, “
Tendon Tissue Microdamage and the Limits of Intrinsic Repair
,”
Matrix Biol.
,
85-86
, pp.
68
79
.10.1016/j.matbio.2019.07.008
33.
Wunderli
,
S. L.
,
Blache
,
U.
, and
Snedeker
,
J. G.
,
2020
, “
Tendon Explant Models for Physiologically Relevant In Vitro Study of Tissue Biology—A Perspective
,”
Connect. Tissue Res.
,
61
(
3–4
), pp.
262
277
.10.1080/03008207.2019.1700962
34.
Barbero
,
A.
,
Ploegert
,
S.
,
Heberer
,
M.
, and
Martin
,
I.
,
2003
, “
Plasticity of Clonal Populations of Dedifferentiated Adult Human Articular Chondrocytes
,”
Arthritis Rheum.
,
48
(
5
), pp.
1315
1325
.10.1002/art.10950
35.
Bayhaqi
,
Y. A.
,
Navarini
,
A.
,
Rauter
,
G.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2019
, “
Neural Network in Tissue Characterization of Optical Coherence Tomography (OCT) Image for Smart Laser Surgery: Preliminary Study
,”
Proc. SPIE
11044
, pp. 1104402-1–1104402-6.10.1117/12.2503214
36.
Abbasi
,
H.
,
Rauter
,
G.
,
Guzman
,
R.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2018
, “
Plasma Plume Expansion Dynamics in Nanosecond Nd:YAG Laserosteotome
,”
Proc. SPIE
10505
, pp. 1050513-1–1050513-7.10.1117/12.2290980
37.
Abbasi
,
H.
,
Bernal
,
L. M. B.
,
Hamidi
,
A.
,
Droneau
,
A.
,
Canbaz
,
F.
,
Guzman
,
R.
,
Jacques
,
S. L.
,
Cattin
,
P. C.
, and
Zam
,
A.
,
2020
, “
Combined Nd: YAG and Er: YAG Lasers for Real-Time Closed-Loop Tissue-Specific Laser Osteotomy
,”
Biomed. Opt. Express
,
11
(
4
), pp.
1790
1807
.10.1364/BOE.385862
You do not currently have access to this content.