Abstract

A major aim in the surgical management of soft tissue cancers is to detect and remove all cancerous tissues while ensuring noncancerous tissue remains intact. Breast-conserving surgery provides a prime illustration of this aim, since remaining cancer in breast margins results in multiple surgeries, while removal of too much unaffected tissue often has undesirable cosmetic effects. Similarly, resection of benign lymph nodes during sentinel lymph node biopsy can cause deleterious health outcomes. The objective of this study was to create an intraoperative, in vivo device to address these challenges. Instant diagnostic information generated by this device could allow surgeons to precisely and completely remove all malignant tissue during the first surgery. Surgical forceps based on Martin forceps were instrumented at the tips with high-frequency ultrasonic transducers composed of polyvinylidene difluoride, a thickness-sensing rotary potentiometer at the base, and a spring to provide the appropriate restoring force. Transducer wires within the forceps were connected to an external high-frequency pulser-receiver, activating the forceps' transmitting transducer at 50 MHz and amplifying through-transmission signals from the receiving transducer. The forceps were tested with tissue-mimicking agarose phantoms embedded with 58–550 μm polyethylene microspheres to simulate various stages of cancer progression and to provide a range of measurement values. Results were compared with measurements from standard 50 MHz immersion transducers. The results showed that the forceps displayed similar sensitivity for attenuation and increased accuracy for wave speed. The forceps could also be extended to endoscopes and laparoscopes.

References

1.
Emmadi
,
R.
, and
Wiley
,
E. L.
,
2012
, “
Evaluation of Resection Margins in Breast Conservation Therapy: The Pathology Perspective—Past, Present, and Future
,”
Int. J. Surg. Oncol.
,
2012
, pp.
1
9
.10.1155/2012/180259
2.
McCahill
,
L. E.
,
Single
,
R. M.
,
Aiello Bowles
,
E. J.
,
Feigelson
,
H. S.
,
James
,
T. A.
,
Barney
,
T.
,
Engel
,
J. M.
, and
Onitilo
,
A. A.
,
2012
, “
Variability in Reexcision Following Breast Conservation Surgery
,”
JAMA
,
307
(
5
), pp.
467
475
.10.1001/jama.2012.43
3.
Waljee
,
J. F.
,
Hu
,
E. S.
,
Newman
,
L. A.
, and
Alderman
,
A. K.
,
2008
, “
Predictors of Re-Excision Among Women Undergoing Breast-Conserving Surgery for Cancer
,”
Ann. Surg. Oncol.
,
15
(
5
), pp.
1297
1303
.10.1245/s10434-007-9777-x
4.
Rubio
,
I. T.
,
Ahmed
,
M.
,
Kovacs
,
T.
, and
Marco
,
V.
,
2016
, “
Margins in Breast Conserving Surgery: A Practice-Changing Process
,”
Eur. J. Surg. Oncol.
,
42
(
5
), pp.
631
640
.10.1016/j.ejso.2016.01.019
5.
Hewes
,
J. C.
,
Imkampe
,
A.
,
Haji
,
A.
, and
Bates
,
T.
,
2009
, “
Importance of Routine Cavity Sampling in Breast Conservation Surgery
,”
Br. J. Surg.
,
96
(
1
), pp.
47
53
.10.1002/bjs.6435
6.
Kirby
,
G.
, and
Kirby
,
R.
,
2015
, “
Cavity Biopsy and the Assessment of Marginal Status Following Breast Conserving Therapy
,”
Eur. J. Surg. Oncol.
,
41
(
11
), p.
s265
.10.1016/j.ejso.2015.08.044
7.
Barthelmes
,
L.
,
Al Awa
,
A.
, and
Crawford
,
D. J.
,
2003
, “
Effect of Cavity Margin Shavings to Ensure Completeness of Excision on Local Recurrence Rates Following Breast Conserving Surgery
,”
Eur. J. Surg. Oncol.
,
29
(
8
), pp.
644
648
.10.1016/S0748-7983(03)00122-7
8.
Povoski
,
S. P.
,
Jimenez
,
R. E.
,
Wang
,
W. P.
, and
Xu
,
R. X.
,
2009
, “
Standardized and Reproducible Methodology for the Comprehensive and Systematic Assessment of Surgical Resection Margins During Breast-Conserving Surgery for Invasive Breast Cancer
,”
BMC Cancer
,
9
(
1
), p.
254
.10.1186/1471-2407-9-254
9.
Wang
,
K.
,
Ren
,
Y.
, and
He
,
J.
,
2017
, “
Cavity Shaving Plus Lumpectomy Versus Lumpectomy Alone for Patients With Breast Cancer Undergoing Breast-Conserving Surgery: A Systematic Review and Meta-Analysis
,”
PLoS One
,
12
(
1
), p.
e0168705
.10.1371/journal.pone.0168705
10.
Huxley
,
N.
,
Jones-Hughes
,
T.
,
Coelho
,
H.
,
Snowsill
,
T.
,
Cooper
,
C.
,
Meng
,
Y.
,
Hyde
,
C.
, and
Mújica-Mota
,
R.
,
2015
, “
A Systematic Review and Economic Evaluation of Intraoperative Tests [RD-100i One-Step Nucleic Acid Amplification (OSNA) System and Metasin Test] for Detecting Sentinel Lymph Node Metastases in Breast Cancer
,”
Health Technol. Assess
,
19
(
2
), pp.
1
215
.10.3310/hta19020
11.
Lyman
,
G. H.
,
Temin
,
S.
,
Edge
,
S. B.
,
Newman
,
L. A.
,
Turner
,
R. R.
,
Weaver
,
D. L.
,
Benson
,
A. B.
,
Bosserman
,
L. D.
,
Burstein
,
H. J.
,
Cody
,
H.
,
Hayman
,
J.
,
Perkins
,
C. L.
,
Podoloff
,
D. A.
, and
Giuliano
,
A. E.
,
2014
, “
Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update
,”
J. Clin. Oncol.
,
32
(
13
), pp.
1365
1383
.10.1200/JCO.2013.54.1177
12.
Layfield
,
D. M.
,
Agrawal
,
A.
,
Roche
,
H.
, and
Cutress
,
R. I.
,
2011
, “
Intraoperative Assessment of Sentinel Lymph Nodes in Breast Cancer
,”
Br. J. Surg.
,
98
(
1
), pp.
4
17
.10.1002/bjs.7229
13.
Tew
,
K.
,
Irwig
,
L.
,
Matthews
,
A.
,
Crowe
,
P.
, and
Macaskill
,
P.
,
2005
, “
Meta-Analysis of Sentinel Node Imprint Cytology in Breast Cancer
,”
Br. J. Surg.
,
92
(
9
), pp.
1068
1080
.10.1002/bjs.5139
14.
Liang
,
R.
,
Craik
,
J.
,
Juhasz
,
E. S.
, and
Harman
,
C. R.
,
2003
, “
Imprint Cytology Versus Frozen Section: Intraoperative Analysis of Sentinel Lymph Nodes in Breast Cancer
,”
ANZ J. Surg.
,
73
(
8
), pp.
597
599
.10.1046/j.1445-2197.2003.02728.x
15.
Grieve
,
K.
,
Mouslim
,
K.
,
Assayag
,
O.
,
Dalimier
,
E.
,
Harms
,
F.
,
Bruhat
,
A.
,
Boccara
,
C.
, and
Antoine
,
M.
,
2016
, “
Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography
,”
Technol. Cancer Res. Treat.
,
15
(
2
), pp.
266
274
.10.1177/1533034615575817
16.
Doyle
,
T.
,
2016
, “
Detecting Breast Cancer With High-Frequency Ultrasound: A Histological Perspective
,”
Proceedings of the 22nd International Congress on Acoustics (ICA 2016)
, Buenos Aires, Argentina, Sept. 5–9, Paper No.
ICA2016-651
.http://www.ica2016.org.ar/ica2016proceedings/ica2016/ICA2016-0651.pdf
17.
Doyle
,
T. E.
,
Factor
,
R. E.
,
Ellefson
,
C. L.
,
Sorensen
,
K. M.
,
Ambrose
,
B. J.
,
Goodrich
,
J. B.
,
Hart
,
V. P.
,
Jensen
,
S. C.
,
Patel
,
H.
, and
Neumayer
,
L. A.
,
2011
, “
High-Frequency Ultrasound for Intraoperative Margin Assessments in Breast Conservation Surgery: A Feasibility Study
,”
BMC Cancer
,
11
(
1
), p.
444
.10.1186/1471-2407-11-444
18.
Doyle
,
T. E.
, and
Neumayer
,
L. A.
,
2018
, “
Method and System With Oppositely-Facing Ultrasonic Transducers for Determining Tissue Pathology
,” U.S. Patent No.
10,041,910
.http://www.freepatentsonline.com/10041910.html
19.
Doyle
,
T. E.
,
Kwon
,
S.
,
Patel
,
H. J.
, and
Goodrich
,
J. B.
,
2018
, “
Ultrasonic Method With Short Pulses for Monitoring Monolayers of Cultured Cells
,” U.S. Patent No.
10,017,726
.http://www.freepatentsonline.com/10017726.html
20.
Doyle
,
T. E.
,
Patel
,
H.
,
Goodrich
,
J. B.
,
Kwon
,
S.
,
Ambrose
,
B. J.
, and
Pearson
,
L. H.
,
2010
, “
Ultrasonic Differentiation of Normal Versus Malignant Breast Epithelial Cells in Monolayer Cultures
,”
J. Acoust. Soc. Am.
,
128
(
5
), pp.
EL229
EL235
.10.1121/1.3499699
21.
Doyle
,
T. E.
,
Warnick
,
K. H.
, and
Carruth
,
B. L.
,
2007
, “
Histology-Based Simulations for the Ultrasonic Detection of Microscopic Cancer In Vivo
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
EL210
EL216
.10.1121/1.2800894
22.
Omer
,
R.
,
LaFond
,
A.
,
Carter
,
C.
,
Neumayer
,
A.
,
Factor
,
R.
, and
Doyle
,
T.
,
2016
, “
Evaluating Margin Status With High-Frequency (20-80 MHz) Analytical Ultrasound During Breast Conservation Surgery
,”
Proceedings of the 22nd International Congress on Acoustics (ICA 2016)
, Buenos Aires, Argentina, Sept. 5–9, Paper No.
ICA2016-647
.http://www.ica2016.org.ar/ica2016proceedings/ica2016/ICA2016-0647.pdf
23.
Cowan
,
N.
,
Coffman
,
Z.
,
Omer
,
R.
, and
Doyle
,
T.
,
2016
, “
Sensitivity of High-Frequency Ultrasound to Breast Cancer Lobular Carcinomas: Results From Phantom and Surgical Specimen Studies
,”
Proceedings of the
22nd In
ternational Congress on Acoustics (ICA 2016)
, Buenos Aires, Argentina, Sept. 5–9, Paper No.
ICA2016–643
.http://www.ica2016.org.ar/ica2016proceedings/ica2016/ICA2016-0643.pdf
24.
Bathla
,
L.
,
Harris
,
A.
,
Davey
,
M.
,
Sharma
,
P.
, and
Silva
,
E.
,
2011
, “
High Resolution Intra-Operative Two-Dimensional Specimen Mammography and Its Impact on Second Operation for Re-excision of Positive Margins at Final Pathology After Breast Conservation Surgery
,”
Am. J. Surg.
,
202
(
4
), pp.
387
394
.10.1016/j.amjsurg.2010.09.031
25.
Abe
,
H.
,
Shimauchi
,
A.
,
Fan
,
X.
,
River
,
J. N.
,
Sattar
,
H.
,
Mueller
,
J.
,
Karczmar
,
G. S.
, and
Newstead
,
G. M.
,
2012
, “
Comparing Post-Operative Human Breast Specimen Radiograph and MRI in Lesion Margin and Volume Assessment
,”
J. Appl. Clin. Med. Phys.
,
13
(
6
), pp.
267
276
.10.1120/jacmp.v13i6.3802
26.
Das
,
S.
,
Thorek
,
D. L. J.
, and
Grimm
,
J.
,
2014
, “
Cerenkov Imaging
,”
Adv. Cancer. Res.
,
124
, pp.
213
234
.10.1016/B978-0-12-411638-2.00006-9
27.
Schnabel
,
F.
,
Boolbol
,
S. K.
,
Gittleman
,
M.
,
Karni
,
T.
,
Tafra
,
L.
,
Feldman
,
S.
,
Police
,
A.
,
Friedman
,
N. B.
,
Karlan
,
S.
,
Holmes
,
D.
,
Willey
,
S. C.
,
Carmon
,
M.
,
Fernandez
,
K.
,
Akbari
,
S.
,
Harness
,
J.
,
Guerra
,
L.
,
Frazier
,
T.
,
Lane
,
K.
,
Simmons
,
R. M.
,
Estabrook
,
A.
, and
Allweis
,
T.
,
2014
, “
A Randomized Prospective Study of Lumpectomy Margin Assessment With Use of MarginProbe in Patients With Nonpalpable Breast Malignancies
,”
Ann. Surg. Oncol.
,
21
(
5
), pp.
1589
1595
.10.1245/s10434-014-3602-0
28.
Haka
,
A. S.
,
Volynskaya
,
Z.
,
Gardecki
,
J. A.
,
Nazemi
,
J.
,
Shenk
,
R.
,
Wang
,
N.
,
Dasari
,
R. R.
,
Fitzmaurice
,
M.
, and
Feld
,
M. S.
,
2009
, “
Diagnosing Breast Cancer Using Raman Spectroscopy: Prospective Analysis
,”
J. Biomed. Opt.
,
14
(
5
), p.
054023
.10.1117/1.3247154
29.
Keller
,
M. D.
,
Vargis
,
E.
,
de Matos Granja
,
N.
,
Wilson
,
R. H.
,
Mycek
,
M. A.
,
Kelley
,
M. C.
, and
Mahadevan-Jansen
,
A.
,
2011
, “
Development of a Spatially Offset Raman Spectroscopy Probe for Breast Tumor Surgical Margin Evaluation
,”
J. Biomed. Opt.
,
16
(
7
), p.
077006
.10.1117/1.3600708
30.
Keller
,
M. D.
,
Majumder
,
S. K.
,
Kelley
,
M. C.
,
Meszoely
,
I. M.
,
Boulos
,
F. I.
,
Olivares
,
G. M.
, and
Mahadevan-Jansen
,
A.
,
2010
, “
Autofluorescence and Diffuse Reflectance Spectroscopy and Spectral Imaging for Breast Surgical Margin Analysis
,”
Lasers Surg. Med.
,
42
(
1
), pp.
15
23
.10.1002/lsm.20865
31.
Nguyen
,
F.
,
Zysk
,
A. M.
,
Chaney
,
E. J.
,
Kotynek
,
J. G.
,
Oliphant
,
U. J.
,
Bellafiore
,
F. J.
,
Rowland
,
K. M.
,
Johnson
,
P. A.
, and
Boppart
,
S. A.
,
2009
, “
Intraoperative Evaluation of Breast Tumor Margins With Optical Coherence Tomography
,”
Cancer Res.
,
69
(
22
), pp.
8790
8796
.10.1158/0008-5472.CAN-08-4340
32.
South
,
F. A.
,
Chaney
,
E. J.
,
Marjanovic
,
M.
,
Adie
,
S. G.
, and
Boppart
,
S. A.
,
2014
, “
Differentiation of Ex Vivo Human Breast Tissue Using Polarization-Sensitive Optical Coherence Tomography
,”
Biomed. Opt. Express
,
5
(
10
), pp.
3417
3426
.10.1364/BOE.5.003417
33.
Patel
,
R.
,
Khan
,
A.
,
Kamionek
,
M.
,
Kandil
,
D.
,
Quinlan
,
R.
, and
Yaroslavsky
,
A. N.
,
2013
, “
Delineating Breast Ductal Carcinoma Using Combined Dye-Enhanced Wide-Field Polarization Imaging and Optical Coherence Tomography
,”
J. Biophotonics
,
6
(
9
), pp.
679
686
.10.1002/jbio.201200102
34.
Al-Ramadhani
,
S.
,
Sai-Giridhar
,
P.
,
George
,
D.
,
Gopinath
,
P.
,
Arkoumani
,
E.
,
Jader
,
S.
,
Sundaresan
,
M.
,
Salgado
,
R.
,
Larsimont
,
D.
,
Bustin
,
S. A.
, and
Sundaresan
,
V.
,
2013
, “
Metasin—An Intra-Operative RT-qPCR Assay to Detect Metastatic Breast Cancer in Sentinel Lymph Nodes
,”
Int. J. Mol. Sci.
,
14
(
7
), pp.
12931
12952
.10.3390/ijms140712931
35.
Stoffels
,
I.
,
Morscher
,
S.
,
Helfrich
,
I.
,
Hillen
,
U.
,
Leyh
,
J.
,
Burton
,
N. C.
,
Sardella
,
T. C. P.
,
Claussen
,
J.
,
Poeppel
,
T. D.
,
Bachmann
,
H. S.
,
Roesch
,
A.
,
Griewank
,
K.
,
Schadendorf
,
D.
,
Gunzer
,
M.
, and
Klode
,
J.
,
2015
, “
Metastatic Status of Sentinel Lymph Nodes in Melanoma Determined Noninvasively With Multispectral Optoacoustic Imaging
,”
Sci. Transl. Med.
,
7
(
317
), p.
317ra199
.10.1126/scitranslmed.aad1278
36.
Feleppa
,
E. J.
,
Mamou
,
J.
,
Porter
,
C. R.
, and
Machi
,
J.
,
2011
, “
Quantitative Ultrasound in Cancer Imaging
,”
Semin. Oncol.
,
38
(
1
), pp.
136
150
.10.1053/j.seminoncol.2010.11.006
37.
Tadayyon
,
H.
,
Sadeghi-Naini
,
A.
,
Wirtzfeld
,
L.
,
Wright
,
F. C.
, and
Czarnota
,
G.
,
2014
, “
Quantitative Ultrasound Characterization of Locally Advanced Breast Cancer by Estimation of Its Scatterer Properties
,”
Med. Phys.
,
41
(
1
), p.
012903
.10.1118/1.4852875
38.
Mamou
,
J.
,
Coron
,
A.
,
Oelze
,
M. L.
,
Saegusa-Beecroft
,
E.
,
Hata
,
M.
,
Lee
,
P.
,
Machi
,
J.
,
Yanagihara
,
E.
,
Laugier
,
P.
, and
Feleppa
,
E. J.
,
2011
, “
Three-Dimensional High-Frequency Backscatter and Envelope Quantification of Cancerous Human Lymph Nodes
,”
Ultrasound Med. Biol.
,
37
(
3
), pp.
345
357
.10.1016/j.ultrasmedbio.2010.11.020
39.
Huang
,
S. W.
, and
Li
,
P. C.
,
2005
, “
Ultrasonic Computed Tomography Reconstruction of the Attenuation Coefficient Using a Linear Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
11
), pp.
2011
2022
.10.1109/TUFFC.2005.1561670
40.
Li
,
C.
,
Duric
,
N.
, and
Huang
,
L.
,
2008
, “
Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation
,”
International Conference on BioMedical Engineering and Informatics
,
Y.
Peng
and
Y.
Zhang
, ed., Sanya, China, May 2730,
IEEE
,
Piscataway
, NJ, pp.
708
712
.10.1109/BMEI.2008.303
41.
Povey
,
M. J. W.
,
1997
,
Ultrasonic Techniques for Fluids Characterization
,
Academic Press
,
San Diego
,
CA
, pp.
116
117
.
42.
Laishram
,
S.
, and
Shariff
,
S.
,
2015
, “
Significance of Nuclear Morphometry on Fine Needle Aspirates of Breast Lesions
,”
J. Med. Res.
,
1
(
3
), pp.
72
75
.http://www.maleriaresearch.com/articles/details/27
43.
Jeong
,
J. W.
,
Shin
,
D. C.
,
Do
,
S. H.
,
Blanco
,
C.
,
Klipfel
,
N. E.
,
Holmes
,
D. R.
,
Hovanessian-Larsen
,
L. J.
, and
Marmarelis
,
V. Z.
,
2008
, “
Differentiation of Cancerous Lesions in Excised Human Breast Specimens Using Multiband Attenuation Profiles From Ultrasonic Transmission Tomography
,”
J. Ultrasound Med.
,
27
(
3
), pp.
435
451
.10.7863/jum.2008.27.3.435
44.
Mamou
,
J.
,
Coron
,
A.
,
Hata
,
M.
,
Machi
,
J.
,
Yanagihara
,
E.
,
Laugier
,
P.
, and
Feleppa
,
E. J.
,
2010
, “
Three-Dimensional High-Frequency Characterization of Cancerous Lymph Nodes
,”
Ultrasound Med. Biol.
,
36
(
3
), pp.
361
375
.10.1016/j.ultrasmedbio.2009.10.007
45.
Haji
,
A.
,
S Ryan
,
S.
,
Bjarnason
,
I.
,
Donaldson
,
N.
, and
Papagrigoriadis
,
S.
,
2012
, “
Colonoscopic High Frequency Mini-Probe Ultrasound is More Accurate Than Conventional Computed Tomography in the Local Staging of Colonic Cancer
,”
Colorectal Dis.
,
14
(
8
), pp.
953
959
.10.1111/j.1463-1318.2011.02871.x
46.
Doyle
,
T. E.
,
Carlson
,
J. E.
,
Cowan
,
N.
, and
Wagner
,
G.
,
2018
, “
Direct Measurement of Nuclear Diameter With High-Frequency Ultrasound (10–100 MHz) for Breast Cancer Detection
,”
J. Acoust. Soc. Am.
,
143
(
3
), p.
1801
.10.1121/1.5035892
47.
Cowan
,
N.
,
Coffman
,
Z. A.
,
Omer
,
R. K.
,
Finch
,
B. F.
, and
Doyle
,
T. E.
,
2016
, “
Phantom Study on the Detectability of Micro-Tumors in Breast Tissue Using High-Frequency Ultrasound
,”
J. Acoust. Soc. Am.
,
139
(
4
), p.
2176
.10.1121/1.4950465
48.
Chen
,
D.
,
Malyarenko
,
E.
,
Seviaryn
,
F.
,
Yuan
,
Y.
,
Sherman
,
M.
,
Bandyopadhyay
,
S.
,
Gierach
,
G.
,
Greenway
,
C.
,
Maeva
,
E.
,
Strumban
,
E.
,
Duric
,
N.
, and
Maev
,
R.
,
2013
, “
Characterization of Human Breast Cancer by Scanning Acoustic Microscopy
,”
Proc. SPIE
8675
, p.
86750M
.
49.
Miura
,
K.
, and
Yamamoto
,
S.
,
2015
, “
A Scanning Acoustic Microscope Discriminates Cancer Cells in Fluid
,”
Sci. Rep.
,
5
(
1
), p.
15243
.10.1038/srep15243
50.
Yu
,
L.
,
Yan
,
Y.
,
Yu
,
X.
, and
Xia
,
Y.
,
2018
, “
Design and Realization of Forceps 3D Force Sensing Capability for Robot-Assisted Surgical System
,”
IEEE Sens. J.
,
18
(
21
), pp.
8924
8932
.10.1109/JSEN.2018.2867838
51.
Dobbelsteen
,
J. J.
,
Lee
,
R. A.
,
Noorden
,
M. V.
, and
Dankelman
,
J.
,
2012
, “
Indirect Measurement of Pinch and Pull Forces at the Shaft of Laparoscopic Graspers
,”
Med. Biol. Eng. Comput.
,
50
(
3
), pp.
215
221
.10.1007/s11517-012-0862-3
52.
Gehin
,
C.
,
Schmitt
,
P. M.
,
Ramon
,
C.
,
Delhomme
,
G.
, and
Dittmar
,
A.
,
2005
, “
For SAFE: Instrumented and Secured Obstetrical Forceps
,”
Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference
, Vol.
7
, Shanghai, China, Sept. 1–4, pp.
6745
6747
.10.1109/IEMBS.2005.1616053
53.
Gonenc
,
B.
,
Chamani
,
A.
,
Handa
,
J.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2017
, “
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery
,”
IEEE Sens. J.
,
17
(
11
), pp.
3526
3541
.10.1109/JSEN.2017.2694965
54.
Zareinia
,
K.
,
Maddahi
,
Y.
,
Gan
,
L. S.
,
Ghasemloonia
,
A.
,
Lama
,
S.
,
Sugiyama
,
T.
,
Yang
,
F. W.
, and
Sutherland
,
G. R.
,
2016
, “
A Force-Sensing Bipolar Forceps to Quantify Tool-Tissue Interaction Forces in Microsurgery
,”
IEEE ASME Trans. Mechatron.
,
21
(
5
), pp.
2365
2377
.10.1109/TMECH.2016.2563384
55.
Moreau
,
R.
,
Pham
,
M. T.
,
Silveira
,
R.
,
Redarce
,
T.
,
Brun
,
X.
, and
Dupuis
,
O.
,
2007
, “
Design of a New Instrumented Forceps: Application to Safe Obstetrical Forceps Blade Placement
,”
IEEE Trans. Biomed. Eng.
,
54
(
7
), pp.
1280
1290
.10.1109/TBME.2006.889777
56.
Ghasemloonia
,
A.
,
Maddahi
,
Y.
,
Zareinia
,
K.
,
Lama
,
S.
,
Dort
,
J. C.
, and
Sutherland
,
G. R.
,
2017
, “
Surgical Skill Assessment Using Motion Quality and Smoothness
,”
J. Surg. Educ.
,
74
(
2
), pp.
295
305
.10.1016/j.jsurg.2016.10.006
57.
Harada
,
K.
,
Takazawa
,
S.
,
Tsukuda
,
Y.
,
Ishimaru
,
T.
,
Sugita
,
N.
,
Iwanaka
,
T.
, and
Mitsuishi
,
M.
,
2015
, “
Quantitative Pediatric Surgical Skill Assessment Using a Rapid-Prototyped Chest Model
,”
Minimally Invasive Ther. Allied Technol.
,
24
(
4
), pp.
226
232
.10.3109/13645706.2014.996161
58.
Robert
,
R.
,
Chen
,
L.
,
Shanbhag
,
R.
,
Drozek
,
D.
, and
Choi
,
J.
,
2013
, “
Method for Detecting Ablation Damage Using Sensor Integration of Hot Biopsy Forceps
,”
ASME J. Med. Devices
,
7
(
3
), p.
030948
.10.1115/1.4024348
59.
Dargahi
,
J.
,
Najarian
,
S.
,
Ramezanifa
,
R.
, and
Ghomshe
,
F. T.
,
2007
, “
Fabrication and Testing of a Medical Surgical Instrument Capable of Detecting Simulated Embedded Lumps
,”
Am. J. Appl. Sci.
,
4
(
12
), pp.
957
964
.10.3844/ajassp.2007.957.964
60.
Yu
,
H.
,
Shen
,
J. H.
,
Shah
,
R. J.
,
Simaan
,
N.
, and
Joos
,
K. M.
,
2015
, “
Evaluation of Microsurgical Tasks With OCT-Guided and/or Robot-Assisted Ophthalmic Forceps
,”
Biomed. Opt. Express
,
6
(
2
), pp.
457
472
.10.1364/BOE.6.000457
61.
Bourantas
,
C. V.
,
Naka
,
K. K.
,
Garg
,
S.
,
Thackray
,
S.
,
Papadopoulos
,
D.
,
Alamgir
,
F. M.
,
Hoye
,
A.
, and
Michalis
,
L. K.
,
2010
, “
Clinical Indications for Intravascular Ultrasound Imaging
,”
Echocardiography
,
27
(
10
), pp.
1282
1290
.10.1111/j.1540-8175.2010.01259.x
62.
Ukimura
,
O.
,
Okihara
,
K.
,
Kamoi
,
K.
,
Naya
,
Y.
,
Ochiai
,
A.
, and
Miki
,
T.
,
2008
, “
Intraoperative Ultrasonography in an Era of Minimally Invasive Urology
,”
Int. J. Urol.
,
15
(
8
), pp.
673
680
.10.1111/j.1442-2042.2008.02090.x
63.
Wang
,
C. C.
,
Chen
,
P. Y.
,
Wang
,
T. M.
, and
Wang
,
C. L.
,
2012
, “
Ultrasound-Guided Minimally Invasive Surgery for Achilles Tendon Rupture: Preliminary Results
,”
Foot Ankle Int.
,
33
(
7
), pp.
582
590
.10.3113/FAI.2012.0582
64.
Schneider
,
C.
,
Nguan
,
C.
,
Rohling
,
R.
, and
Salcudean
,
S.
,
2016
, “
Tracked “Pick-Up” Ultrasound for Robot-Assisted Minimally Invasive Surgery
,”
IEEE Trans. Biomed. Eng.
,
63
(
2
), pp.
260
268
.10.1109/TBME.2015.2453173
65.
Sato
,
H.
,
Harada
,
K.
,
Arata
,
J.
,
Oguri
,
S.
,
Onogi
,
S.
,
Ikeda
,
T.
,
Hashizume
,
M.
, and
Mitsuishi
,
M.
,
2016
, “
Design and Prototyping of a Handheld 3-DOF Laparoscopic Ultrasound Manipulator for Liver Surgery
,”
Procedia CIRP
,
49
, pp.
121
124
.10.1016/j.procir.2015.09.005
66.
Chong
,
C. C. N.
,
Tang
,
R. S. Y.
,
Wong
,
J. C. T.
,
Chan
,
A. W. H.
, and
Teoh
,
A. Y. B.
,
2016
, “
Endoscopic Ultrasound of Pancreatic Lesions
,”
J. Vis. Surg.
,
2
(
119
), pp.
119
–12
6
.10.21037/jovs.2016.07.10
67.
Widmer
,
J.
,
Singhal
,
S.
,
Gaidhane
,
M.
, and
Kahaleh
,
M.
,
2014
, “
Endoscopic Ultrasound-Guided Endoluminal Drainage of the Gallbladder
,”
Dig. Endosc.
,
26
(
4
), pp.
525
531
.10.1111/den.12221
68.
Harvey
,
C. J.
,
Pilcher
,
J.
,
Richenberg
,
J.
,
Patel
,
U.
, and
Frauscher
,
F.
,
2012
, “
Applications of Transrectal Ultrasound in Prostate Cancer
,”
Br. J. Radiol.
,
85
(
1
), pp.
S3
S17
.10.1259/bjr/56357549
69.
Plett
,
S. K.
,
Poder
,
L.
,
Brooks
,
R. A.
, and
Morgan
,
T. A.
,
2016
, “
Transvaginal Ultrasound-Guided Biopsy of Deep Pelvic Masses: How We Do It
,”
J. Ultrasound Med.
,
35
(
6
), pp.
1113
1122
.10.7863/ultra.15.08002
70.
Tobergte
,
A.
,
Passig
,
G.
,
Kuebler
,
B.
,
Seibold
,
U.
,
Hagn
,
U. A.
,
Fröhlich
,
F. A.
,
Konietschke
,
R.
,
Jörg
,
S.
,
Nickl
,
M.
,
Thielmann
,
S.
,
Haslinger
,
R.
,
Groeger
,
M.
,
Nothhelfer
,
A.
,
Le-Tien
,
L.
,
Gruber
,
R.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2010
, “
MiroSurge—Advanced User Interaction Modalities in Minimally Invasive Robotic Surgery
,”
Presence-Teleoperators Virtual Environ.
,
19
(
5
), pp.
400
414
.10.1162/pres_a_00022
71.
Chen
,
C.-H.
,
Sühn
,
T.
,
Illanes
,
A.
,
Maldonado
,
I.
,
Ahmad
,
H.
,
Wex
,
C.
,
Croner
,
R.
,
Boese
,
A.
, and
Friebe
,
M.
,
2018
, “
Proximally Placed Signal Acquisition Sensoric for Robotic Tissue Tool Interactions
,”
Curr. Dir. Biomed. Eng.
,
4
(
1
), pp.
67
70
.10.1515/cdbme-2018-0017
72.
Ly
,
H. H.
,
Tanaka
,
Y.
,
Fukuda
,
T.
, and
Sano
,
A.
,
2017
, “
Grasper Having Tactile Sensing Function Using Acoustic Reflection for Laparoscopic Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
12
(
8
), pp.
1333
1343
.10.1007/s11548-017-1592-7
73.
Culjat
,
M.
,
Goldenberg
,
D.
,
Tewari
,
P.
, and
Singh
,
R.
,
2010
, “
A Review of Tissue Substitutes for Ultrasound Imaging
,”
Ultrasound Med. Biol.
,
36
(
6
), pp.
861
873
.10.1016/j.ultrasmedbio.2010.02.012
You do not currently have access to this content.